Probabilistic Tractography for Topographically Organized Connectomes

  • Dogu Baran Aydogan
  • Yonggang Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9900)


While tractography is widely used in brain imaging research, its quantitative validation is highly difficult. Many fiber systems, however, have well-known topographic organization which can even be quantitatively mapped such as the retinotopy of visual pathway. Motivated by this previously untapped anatomical knowledge, we develop a novel tractography method that preserves both topographic and geometric regularity of fiber systems. For topographic preservation, we propose a novel likelihood function that tests the match between parallel curves and fiber orientation distributions. For geometric regularity, we use Gaussian distributions of Frenet-Serret frames. Taken together, we develop a Bayesian framework for generating highly organized tracks that accurately follow neuroanatomy. Using multi-shell diffusion images of 56 subjects from Human Connectome Project, we compare our method with algorithms from MRtrix. By applying regression analysis between retinotopic eccentricity and tracks, we quantitatively demonstrate that our method achieves superior performance in preserving the retinotopic organization of optic radiation.


Probabilistic tractography Bayesian inference Visual pathway 



This work was in part supported by the National Institute of Health (NIH) under Grant K01EB013633, P41EB015922, P50AG005142, U01EY025864, U01AG051218.


  1. 1.
    Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., Ramirez-Manzanares, A., Reisert, M., Sakaie, K., Tensaouti, F., Yo, T., Mangin, J.F., Poupon, C.: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56(1), 220–234 (2011)CrossRefGoogle Scholar
  2. 2.
    Côté, M.A., Girard, G., Bor, A., Garyfallidis, E., Houde, J.C., Descoteaux, M.: Tractometer: towards validation of tractography pipelines. Med. Image Anal. 17(7), 844–857 (2013)CrossRefGoogle Scholar
  3. 3.
    Thomas, C., Ye, F.Q., Irfanoglu, M.O., Modi, P., Saleem, K.S., Leopold, D.A., Pierpaoli, C.: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. PNAS 111(46), 16574–16579 (2014)CrossRefGoogle Scholar
  4. 4.
    Engel, S.A., Glover, G.H., Wandell, B.A.: Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7(2), 181–192 (1997)CrossRefGoogle Scholar
  5. 5.
    Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., Villringer, K., Kurth, R., Villringer, A.: Somatotopic organization of human secondary somatosensory cortex. Cereb. Cortex 11(5), 463–473 (2001)CrossRefGoogle Scholar
  6. 6.
    Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., Zilles, K.: Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13(4), 684–701 (2001)CrossRefGoogle Scholar
  7. 7.
    Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)CrossRefGoogle Scholar
  8. 8.
    Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. NeuroImage 54(2), 955–962 (2011)CrossRefGoogle Scholar
  9. 9.
    Mangin, J.F., Fillard, P., Cointepas, Y., Le Bihan, D., Frouin, V., Poupon, C.: Toward global tractography. NeuroImage 80, 290–296 (2013)CrossRefGoogle Scholar
  10. 10.
    Daducci, A., Dal Palu, A., Lemkaddem, A., Thiran, J.P.: COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans. Med. Imaging 34(1), 246–257 (2015)CrossRefGoogle Scholar
  11. 11.
    Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. NeuroImage 119, 338–351 (2015)CrossRefGoogle Scholar
  12. 12.
    Tran, G., Shi, Y.: Fiber orientation and compartment parameter estimation from multi-shell diffusion imaging. IEEE Trans. Med. Imaging 34(11), 2320–2332 (2015)CrossRefGoogle Scholar
  13. 13.
    Essen, D.V., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S., Penna, S.D., Feinberg, D., Glasser, M., Harel, N., Heath, A., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., Petersen, S., Prior, F., Schlaggar, B., Smith, S., Snyder, A., Xu, J., Yacoub, E.: The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)CrossRefGoogle Scholar
  14. 14.
    Kammen, A., Law, M., Tjan, B.S., Toga, A.W., Shi, Y.: Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis. NeuroImage 125, 767–779 (2016)CrossRefGoogle Scholar
  15. 15.
    Tournier, J.D., Calamante, F., Connelly., A.: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In: Proceedings of 18th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), p. 1670 (2010)Google Scholar
  16. 16.
    Benson, N.C., Butt, O.H., Datta, R., Radoeva, P.D., Brainard, D.H., Aguirre, G.K.: The retinotopic organization of striate cortex is well predicted by surface topology. Curr. Biol. 22(21), 2081–2085 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations