Predictive Subnetwork Extraction with Structural Priors for Infant Connectomes

  • Colin J. Brown
  • Steven P. Miller
  • Brian G. Booth
  • Jill G. Zwicker
  • Ruth E. Grunau
  • Anne R. Synnes
  • Vann Chau
  • Ghassan Hamarneh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9900)

Abstract

We present a new method to identify anatomical subnetworks of the human white matter connectome that are predictive of neurodevelopmental outcomes. We employ our method on a dataset of 168 preterm infant connectomes, generated from diffusion tensor images (DTI) taken shortly after birth, to discover subnetworks that predict scores of cognitive and motor development at 18 months. Predictive subnetworks are extracted via sparse linear regression with weights on each connectome edge. By enforcing novel backbone network and connectivity based priors, along with a non-negativity constraint, the learned subnetworks are simultaneously anatomically plausible, well connected, positively weighted and reasonably sparse. Compared to other state-of-the-art subnetwork extraction methods, we found that our approach extracts subnetworks that are more integrated, have fewer noisy edges and that are also better predictive of neurodevelopmental outcomes.

Notes

Acknowledgements

We thank NSERC, CIHR (MOP-79262: S.P.M. and MOP-86489: R.E.G.), the Canadian Child Health Clinician Scientist Program and the Michael Smith Foundation for Health Research for their financial support.

References

  1. 1.
    World Health Organization. Preterm birth fact sheet no. 363. http://www.who.int/mediacentre/factsheets/fs363/en/. Accessed 03 Mar 2015
  2. 2.
    Back, S.A., Miller, S.P.: Brain injury in premature neonates: a primary cerebral dysmaturation disorder? Ann. Neurol. 75(4), 469–486 (2014)CrossRefGoogle Scholar
  3. 3.
    Chau, V., Synnes, A., Grunau, R.E., Poskitt, K.J., Brant, R., Miller, S.P.: Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology 81(24), 2082–2089 (2013)CrossRefGoogle Scholar
  4. 4.
    Ziv, E., Tymofiyeva, O., Ferriero, D.M., Barkovich, A.J., Hess, C.P., Xu, D.: A machine learning approach to automated structural network analysis: application to neonatal encephalopathy. PLoS ONE 8(11), e78824 (2013)CrossRefGoogle Scholar
  5. 5.
    Brown, C.J., Miller, S.P., Booth, B.G., Andrews, S., Chau, V., Poskitt, K.J., Hamarneh, G.: Structural network analysis of brain development in young preterm neonates. NeuroImage 101, 667–680 (2014)CrossRefGoogle Scholar
  6. 6.
    Brown, C.J., et al.: Prediction of motor function in very preterm infants using connectome features and LSI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 69–76. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Munsell, B.C., Wee, C.-Y., Keller, S.S., Weber, B., Elger, C., da Silva, L.A.T., Nesland, T., Styner, M., Shen, D., Bonilha, L.: Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. NeuroImage 118, 219–230 (2015)CrossRefGoogle Scholar
  8. 8.
    Zhu, D., Shen, D., Jiang, X., Liu, T.: Connectomics signature for characterizaton of MCI and schizophrenia. In: ISBI, pp. 325–328. IEEE (2014)Google Scholar
  9. 9.
    Ghanbari, Y., Smith, A.R., Schultz, R.T., Verma, R.: Identifying group discriminative and age regressive sub-nets from DTI-based connectivity via a unified framework of NMF and graph embedding. MIA 18(8), 1337–1348 (2014)Google Scholar
  10. 10.
    Li, H., Xue, Z., Ellmore, T.M., Frye, R.E., Wong, S.T.: Identification of faulty DTI-based sub-networks in autism using network regularized SVM. In: Proceedings of ISBI, vol. 6, pp. 550–553 (2012)Google Scholar
  11. 11.
    Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E.: Interpretable whole-brain prediction analysis with GraphNet. NeuroImage 72(2), 304–321 (2013)CrossRefGoogle Scholar
  12. 12.
    Bayley, N.: Manual for the Bayley Scales of Infant Development, 3rd edn. Harcourt, San Antonio (2006)Google Scholar
  13. 13.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. AI Res. 16(1), 321–357 (2002)MATHGoogle Scholar
  14. 14.
    Schmidt, M.: Graphical model structure learning with l1-regularization. Ph.D. thesis, University of British Columbia (Vancouver) 2010Google Scholar
  15. 15.
    Cheng, H., Wang, Y., Sheng, J., Kronenberger, W.G., Mathews, V.P., Hummer, T.A., Saykin, A.J.: Characteristics and variability of structural networks derived from diffusion tensor imaging. NeuroImage 61(4), 1153–1164 (2012)CrossRefGoogle Scholar
  16. 16.
    Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 106(6), 2035–40 (2009)CrossRefGoogle Scholar
  17. 17.
    de Reus, M.A., Saenger, V.M., Kahn, R.S., van den Heuvel, M.P.: An edge-centric perspective on the human connectome: link communities in the brain. Phil. Trans. R. Soc. B 369(1653), 20130527 (2014)CrossRefGoogle Scholar
  18. 18.
    Bi, J., Bennett, K.P.: Regression error characteristic curves. In: Proceedings of ICML-2003, pp. 43–50 (2003)Google Scholar
  19. 19.
    Zhang, S., Ide, J.S., Li, C.S.R.: Resting-state functional connectivity of the medial superior frontal cortex. Cereb. Cortex 22(1), 99–111 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Colin J. Brown
    • 1
  • Steven P. Miller
    • 2
  • Brian G. Booth
    • 1
  • Jill G. Zwicker
    • 3
  • Ruth E. Grunau
    • 3
  • Anne R. Synnes
    • 3
  • Vann Chau
    • 2
  • Ghassan Hamarneh
    • 1
  1. 1.Medical Image Analysis LabSimon Fraser UniversityBurnabyCanada
  2. 2.The Hospital for Sick Children and The University of TorontoTorontoCanada
  3. 3.University of British Columbia and Child and Family Research InstituteVancouverCanada

Personalised recommendations