GraMPa: Graph-Based Multi-modal Parcellation of the Cortex Using Fusion Moves

  • Sarah Parisot
  • Ben Glocker
  • Markus D. Schirmer
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9900)


Parcellating the brain into a set of distinct subregions is an essential step for building and studying brain connectivity networks. Connectivity driven parcellation is a natural approach, but suffers from the lack of reliability of connectivity data. Combining modalities in the parcellation task has the potential to yield more robust parcellations, yet hasn’t been explored much. In this paper, we propose a graph-based multi-modal parcellation method that iteratively computes a set of modality specific parcellations and merges them using the concept of fusion moves. The merged parcellation initialises the next iteration, forcing all modalities to converge towards a set of mutually informed parcellations. Experiments on 50 subjects of the Human Connectome Project database show that the multi-modal setting yields parcels that are more reproducible and more representative of the underlying connectivity.


Markov Random Field Adjust Rand Index Markov Random Field Model Unary Cost Human Connectome Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34(1), 144–155 (2007)CrossRefGoogle Scholar
  2. 2.
    Blumensath, T., Jbabdi, S., Glasser, M.F., Van Essen, D.C., Ugurbil, K., Behrens, T.E., Smith, S.M.: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. NeuroImage 76, 313–324 (2013)CrossRefGoogle Scholar
  3. 3.
    Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012)CrossRefGoogle Scholar
  4. 4.
    Eickhoff, S.B., Thirion, B., Varoquaux, G., Bzdok, D.: Connectivity-based parcellation: critique and implications. Hum. Brain Mapp. 36(12), 4771–4792 (2015)CrossRefGoogle Scholar
  5. 5.
    Glasser, M.F., Van Essen, D.C.: Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J. Neurosci. 31(32), 11597–11616 (2011)CrossRefGoogle Scholar
  6. 6.
    Honnorat, N., Eavani, H., Satterthwaite, T., Gur, R., Gur, R., Davatzikos, C.: GraSP: geodesic graph-based segmentation with shape priors for the functional parcellation of the cortex. NeuroImage 106, 207–221 (2015)CrossRefGoogle Scholar
  7. 7.
    Kohli, P., Torr, P.H.: Measuring uncertainty in graph cut solutions. Comput. Vis. Image Underst. 112(1), 30–38 (2008)CrossRefGoogle Scholar
  8. 8.
    Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1436–1453 (2007)CrossRefGoogle Scholar
  9. 9.
    Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. IEEE Trans. PAMI 32(8), 1392–1405 (2010)CrossRefGoogle Scholar
  10. 10.
    Moreno-Dominguez, D., Anwander, A., Knösche, T.R.: A hierarchical method for whole-brain connectivity-based parcellation. Hum. Brain Mapp. 35, 5000–5025 (2014)CrossRefGoogle Scholar
  11. 11.
    Ng, B., Varoquaux, G., Poline, J.B., Thirion, B.: Implications of inconsistencies between fMRI and dMRI on multimodal connectivity estimation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 652–659. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40760-4_81 CrossRefGoogle Scholar
  12. 12.
    Parisot, S., Arslan, S., Passerat-Palmbach, J., Wells, W.M., Rueckert, D.: Tractography-driven groupwise multi-scale parcellation of the cortex. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 600–612. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19992-4_47 CrossRefGoogle Scholar
  13. 13.
    Parisot, S., Rajchl, M., Passerat-Palmbach, J., Rueckert, D.: A continuous flow-maximisation approach to connectivity-driven cortical parcellation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 165–172. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24574-4_20 CrossRefGoogle Scholar
  14. 14.
    Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: CVPR, pp. 1–8. IEEE (2007)Google Scholar
  15. 15.
    Sporns, O.: The human connectome: a complex network. Ann. N. Y. Acad. Sci. 1224, 109–125 (2011)CrossRefGoogle Scholar
  16. 16.
    Thirion, B., Varoquaux, G., Dohmatob, E., Poline, J.B.: Which fMRI clustering gives good brain parcellations? Front. Neurosci. 8(167), 13 (2014)Google Scholar
  17. 17.
    Van Essen, D.C., Jbabdi, S., Sotiropoulos, S.N., Chen, C., et al.: Mapping connections in humans and non-human primates: aspirations and challenges for diffusion imaging. In: Diffusion MRI, pp. 337–358 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sarah Parisot
    • 1
  • Ben Glocker
    • 1
  • Markus D. Schirmer
    • 2
  • Daniel Rueckert
    • 1
  1. 1.Biomedical Image Analysis GroupImperial College LondonLondonUK
  2. 2.Stroke DivisionMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations