HIV-1 Resistance to the Nonnucleoside Reverse Transcriptase Inhibitors

  • Nicolas Sluis-CremerEmail author


Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are widely used to treat and prevent HIV-1 infection. Most first-line antiretroviral therapies typically include two nucleoside reverse transcriptase inhibitors with one NNRTI (nevirapine (NVP), efavirenz or rilpivirine (RPV)). Etravrine has been approved for the treatment of HIV-infected antiretroviral therapy-experienced individuals, including those with prior NNRTI exposure. In the HIV-1 prevention arena, single-dose NVP is used to prevent mother-to-child transmission ((MTCT)); the ASPIRE and Ring studies are evaluating whether a vaginal ring containing dapivirine can prevent HIV-1 infection in women; a microbicide gel formulation containing the urea-PETT derivative MIV-150 is in a phase I study to evaluate safety, pharmacokinetics, pharmacodynamics, and acceptability; and a long-acting RPV formulation is under development for preexposure prophylaxis (PrEP). Given their widespread use, particularly in resource-limited settings, there is concern in regard to overlapping resistance between the different NNRTIs. In this chapter we comprehensively review the mechanisms of action and resistance to the NNRTIs that are used clinically. A better understanding of NNRTI resistance—including the mechanisms involved—is important for (1) predicting response to treatment; (2) surveillance of transmitted drug resistance; and (3) development of new classes of NNRTIs with higher genetic barriers to resistance.


HIV-1 Reverse transcriptase NNRTIs Resistance Mechanisms Cross-resistance 



Research in the Sluis-Cremer laboratory was supported by grants AI081571 and GM068406 from the National Institutes of Health (NIH), USA.


  1. 1.
    Hu WS, Hughes SH. HIV-1 reverse transcription. Cold Spring Harb Perspect Med. 2012;2:10.CrossRefGoogle Scholar
  2. 2.
    Warrilow D, Tachedjian G, Harrich D. Maturation of the HIV reverse transcription complex: putting the jigsaw together. Rev Med Virol. 2009;19:324–37.CrossRefPubMedGoogle Scholar
  3. 3.
    Rodgers DW, Gamblin SJ, Harris BA, Ray S, Culp JS, Hellmig B, Woolf DJ, Debouck C, Harrison SC. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1995;92:1222–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hsiou Y, Ding J, Das K, Clark Jr AD, Hughes SH, Arnold E. Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms. Structure. 1996;4:853–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Hsiou Y, Ding J, Das K, Clark Jr AD, Boyer PL, Lewi P, Janssen PA, Kleim JP, Rösner M, Hughes SH, Arnold E. The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance. J Mol Biol. 2001;309:437–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Ding J, Das K, Hsiou Y, Sarafianos SG, Clark Jr AD, Jacobo-Molina A, Tantillo C, Hughes SH, Arnold E. Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. J Mol Biol. 1998;284:1095–111.CrossRefPubMedGoogle Scholar
  7. 7.
    Sarafianos SG, Das K, Tantillo C, Clark Jr AD, Ding J, Whitcomb JM, Boyer PL, Hughes SH, Arnold E. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J. 2001;20:1449–61.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Das K, Martinez SE, Bauman JD, Arnold E. HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat Struct Mol Biol. 2012;19:253–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lapkouski M, Tian L, Miller JT, Le Grice SF, Yang W. Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat Struct Mol Biol. 2013;20:230–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Das K, Martinez SE, Bandwar RP, Arnold E. Structures of HIV-1 RT-RNA/DNA ternary complexes with dATP and nevirapine reveal conformational flexibility of RNA/DNA: insights into requirements for RNase H cleavage. Nucleic Acids Res. 2014;42:8125–37.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Huang H, Chopra R, Verdine GL, Harrison SC. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998;282:1669–75.CrossRefPubMedGoogle Scholar
  12. 12.
    Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992;256:1783–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK. Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure. 2000;8:1089–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Das K, Clark Jr AD, Lewi PJ, Heeres J, De Jonge MR, Koymans LM, Vinkers HM, Daeyaert F, Ludovici DW, Kukla MJ, De Corte B, Kavash RW, Ho CY, Ye H, Lichtenstein MA, Andries K, Pauwels R, De Béthune MP, Boyer PL, Clark P, Hughes SH, Janssen PA, Arnold E. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J Med Chem. 2004;47:2550–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Das K, Bauman JD, Clark Jr AD, Frenkel YV, Lewi PJ, Shatkin AJ, Hughes SH, Arnold E. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci U S A. 2008;105:1466–71.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lansdon EB, Brendza KM, Hung M, Wang R, Mukund S, Jin D, Birkus G, Kutty N, Liu X. Crystal structures of HIV-1 reverse transcriptase with etravirine (TMC125) and rilpivirine (TMC278): implications for drug design. J Med Chem. 2010;53:4295–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Le Grice SF. Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J Biol Chem. 2012;287:40850–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang J, Smerdon SJ, Jäger J, Kohlstaedt LA, Rice PA, Friedman JM, Steitz TA. Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc Natl Acad Sci U S A. 1994;91:7242–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Baba M, Tanaka H, De Clercq E, Pauwels R, Balzarini J, Schols D, Nakashima H, Perno CF, Walker RT, Miyasaka T. Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. Biochem Biophys Res Commun. 1989;165:1375–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Debyser Z, Pauwels R, Andries K, Desmyter J, Kukla M, Janssen PA, De Clercq E. An antiviral target on reverse transcriptase of human immunodeficiency virus type 1 revealed by tetrahydroimidazo-[4,5,1-jk] [1,4]benzodiazepin-2 (1H)-one and -thione derivatives. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1451–5.Google Scholar
  21. 21.
    de Béthune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989–2009). Antiviral Res. 2010;85:75–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Vingerhoets J, Azijn H, Fransen E, De Baere I, Smeulders L, Jochmans D, Andries K, Pauwels R, de Béthune MP. TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J Virol. 2005;79:12773–82.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lazzarin A, Campbell T, Clotet B, Johnson M, Katlama C, Moll A, Towner W, Trottier B, Peeters M, Vingerhoets J, de Smedt G, Baeten B, Beets G, Sinha R, Woodfall B, DUET-2 Study Group. Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-2: 24-week results from a randomised, double-blind, placebo-controlled trial. Lancet. 2007;370:39–48.CrossRefPubMedGoogle Scholar
  24. 24.
    Madruga JV, Cahn P, Grinsztejn B, Haubrich R, Lalezari J, Mills A, Pialoux G, Wilkin T, Peeters M, Vingerhoets J, de Smedt G, Leopold L, Trefiglio R, Woodfall B, DUET-1 Study Group. Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-1: 24-week results from a randomised, double-blind, placebo-controlled trial. Lancet. 2007;370:29–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Baert L, van ’t Klooster G, Dries W, François M, Wouters A, Basstanie E, Iterbeke K, Stappers F, Stevens P, Schueller L, Van Remoortere P, Kraus G, Wigerinck P, Rosier J. Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. Eur J Pharm Biopharm. 2009;72:502–8.CrossRefPubMedGoogle Scholar
  26. 26.
    van ‘t Klooster G, Hoeben E, Borghys H, Looszova A, Bouche MP, van Velsen F, Baert L. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents Chemother. 2010;54:2042–50.CrossRefGoogle Scholar
  27. 27.
    Yoshinaga T, Kobayashi M, Seki T, Miki S, Wakasa-Morimoto C, Suyama-Kagitani A, Kawauchi-Miki S, Taishi T, Kawasuji T, Johns BA, Underwood MR, Garvey EP, Sato A, Fujiwara T. Antiviral characteristics of GSK1265744, an HIV integrase inhibitor dosed orally or by long-acting injection. Antimicrob Agents Chemother. 2015;59:397–407.Google Scholar
  28. 28.
    Margolis D, Brinson C, Eron J, Richmond G, LeBlanc R, Griffith S, St. Clair M, Stevens M, Williams P, Spreen W. 744 and Rilpivirine as two-drug oral maintenance therapy: LAI116482 (LATTE) week 48 results. In: 21st conference on retroviruses and opportunistic infections (CROI 2014). Boston; 3–6 March 2014. Abstract 91LB.Google Scholar
  29. 29.
    Guay LA, Musoke P, Fleming T, Bagenda D, Allen M, Nakabiito C, Sherman J, Bakaki P, Ducar C, Deseyve M, Emel L, Mirochnick M, Fowler MG, Mofenson L, Miotti P, Dransfield K, Bray D, Mmiro F, Jackson JB. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet. 1999;354:795–802.CrossRefPubMedGoogle Scholar
  30. 30.
    Flys T, Nissley DV, Claasen CW, Jones D, Shi C, Guay LA, Musoke P, Mmiro F, Strathern JN, Jackson JB, Eshleman JR, Eshleman SH. Sensitive drug-resistance assays reveal long-term persistence of HIV-1 variants with the K103N nevirapine (NVP) resistance mutation in some women and infants after the administration of single-dose NVP: HIVNET 012. J Infect Dis. 2005;192:24–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Eshleman SH, Guay LA, Wang J, Mwatha A, Brown ER, Musoke P, Mmiro F, Jackson JB. Distinct patterns of emergence and fading of K103N and Y181C in women with subtype A vs. D after single-dose nevirapine: HIVNET 012. J Acquir Immune Defic Syndr. 2005;40:24–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Micek MA, Blanco AJ, Beck IA, Dross S, Matunha L, Montoya P, Seidel K, Gantt S, Matediane E, Jamisse L, Gloyd S, Frenkel LM. Nevirapine resistance by timing of HIV type 1 infection in infants treated with single-dose nevirapine. Clin Infect Dis. 2010;50:1405–14.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Johnson JA, Li JF, Morris L, Martinson N, Gray G, McIntyre J, Heneine W. Emergence of drug-resistant HIV-1 after intrapartum administration of single-dose nevirapine is substantially underestimated. J Infect Dis. 2005;192:16–23.CrossRefPubMedGoogle Scholar
  34. 34.
    Woolfson AD, Malcolm RK, Morrow RJ, Toner CF, McCullagh SD. Intravaginal ring delivery of the reverse transcriptase inhibitor TMC 120 as an HIV microbicide. Int J Pharm. 2006;325:82–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Romano J, Variano B, Coplan P, Van Roey J, Douville K, Rosenberg Z, Temmerman M, Verstraelen H, Van Bortel L, Weyers S, Mitchnick M. Safety and availability of dapivirine (TMC120) delivered from an intravaginal ring. AIDS Res Hum Retroviruses. 2009;25:483–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Nel A, Smythe S, Young K, Malcolm K, McCoy C, Rosenberg Z, Romano J. Safety and pharmacokinetics of dapivirine delivery from matrix and reservoir intravaginal rings to HIV-negative women. J Acquir Immune Defic Syndr. 2009;51:416–23.CrossRefPubMedGoogle Scholar
  37. 37.
    Creasy G, Hoesley C, Friedland B, Zhang S, Plagianos M, Kleinbeck K, Levendosky K, Fernández-Romero J, Zydowsky T. First-in-human safety and pharmacokinetics (PK) of a MIV-150/zinc acetate/carrageenan gel (PC-1005). AIDS Res Hum Retroviruses. 2014;30 Suppl 1:A151.CrossRefGoogle Scholar
  38. 38.
    Jackson AG, Else LJ, Mesquita PM, Egan D, Back DJ, Karolia Z, Ringner-Nackter L, Higgs CJ, Herold BC, Gazzard BG, Boffito M. A compartmental pharmacokinetic evaluation of long-acting rilpivirine in HIV-negative volunteers for pre-exposure prophylaxis. Clin Pharmacol Ther. 2014;96:314–23.CrossRefPubMedGoogle Scholar
  39. 39.
    Spence RA, Kati WM, Anderson KS, Johnson KA. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science. 1995;267:988–93.CrossRefPubMedGoogle Scholar
  40. 40.
    Xia Q, Radzio J, Anderson KS, Sluis-Cremer N. Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses. Protein Sci. 2007;16:1728–37.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu S, Abbondanzieri EA, Rausch JW, Le Grice SF, Zhuang X. Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science. 2008;322:1092–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schauer GD, Huber KD, Leuba SH, Sluis-Cremer N. Mechanism of allosteric inhibition of HIV-1 reverse transcriptase revealed by single-molecule and ensemble fluorescence. Nucleic Acids Res. 2015;42:11687–96.CrossRefGoogle Scholar
  43. 43.
    Bec G, Meyer B, Gerard MA, Steger J, Fauster K, Wolff P, Burnouf D, Micura R, Dumas P, Ennifar E. Thermodynamics of HIV-1 reverse transcriptase in action elucidates the mechanism of action of non-nucleoside inhibitors. J Am Chem Soc. 2013;135:9743–52.CrossRefPubMedGoogle Scholar
  44. 44.
    Grobler JA, Dornadula G, Rice MR, Simcoe AL, Hazuda DJ, Miller MD. HIV-1 reverse transcriptase plus-strand initiation exhibits preferential sensitivity to non-nucleoside reverse transcriptase inhibitors in vitro. J Biol Chem. 2007;282:8005–10.CrossRefPubMedGoogle Scholar
  45. 45.
    Shaw-Reid CA, Feuston B, Munshi V, Getty K, Krueger J, Hazuda DJ, Parniak MA, Miller MD, Lewis D. Dissecting the effects of DNA polymerase and ribonuclease H inhibitor combinations on HIV-1 reverse-transcriptase activities. Biochemistry. 2005;44:1595–606.CrossRefPubMedGoogle Scholar
  46. 46.
    Radzio J, Sluis-Cremer N. Efavirenz accelerates HIV-1 reverse transcriptase ribonuclease H cleavage, leading to diminished zidovudine excision. Mol Pharmacol. 2008;73:601–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Herman BD, Sluis-Cremer N. Transient kinetic analyses of the ribonuclease H cleavage activity of HIV-1 reverse transcriptase in complex with efavirenz and/or a β-thujaplicinol analogue. Biochem J. 2013;455:179–84.CrossRefPubMedGoogle Scholar
  48. 48.
    Muchiri JM, Li D, Dykes C, Bambara RA. Efavirenz stimulates HIV-1 reverse transcriptase RNase H activity by a mechanism involving increased substrate binding and secondary cleavage activity. Biochemistry. 2013;52:4981–90.CrossRefPubMedGoogle Scholar
  49. 49.
    Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X. Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature. 2008;453:184–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sluis-Cremer N. The emerging profile of cross-resistance among the nonnucleoside HIV-1 reverse transcriptase inhibitors. Viruses. 2014;6:2960–73.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yap SH, Sheen CW, Fahey J, Zanin M, Tyssen D, Lima VD, Wynhoven B, Kuiper M, Sluis-Cremer N, Harrigan PR, Tachedjian G. N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance. PLoS Med. 2007;4:e335.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hachiya A, Kodama EN, Sarafianos SG, Schuckmann MM, Sakagami Y, Matsuoka M, Takiguchi M, Gatanaga H, Oka S. Amino acid mutation N348I in the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase confers multiclass resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol. 2008;82:3261–70.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Brehm JH, Koontz DL, Wallis CL, Shutt KA, Sanne I, Wood R, McIntyre JA, Stevens WS, Sluis-Cremer N, Mellors JW, CIPRA-SA Project 1 Study Team. Frequent emergence of N348I in HIV-1 subtype C reverse transcriptase with failure of initial therapy reduces susceptibility to reverse-transcriptase inhibitors. Clin Infect Dis. 2012;55:737–45.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Brenner B, Turner D, Oliveira M, Moisi D, Detorio M, Carobene M, Marlink RG, Schapiro J, Roger M, Wainberg MA. A V106M mutation in HIV-1 clade C viruses exposed to efavirenz confers cross-resistance to non-nucleoside reverse transcriptase inhibitors. AIDS. 2003;17:F1–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Sluis-Cremer N, Jordan MR, Huber K, Wallis CL, Bertagnolio S, Mellors JW, Parkin NT, Harrigan PR. E138A in HIV-1 reverse transcriptase is more common in subtype C than B: implications for rilpivirine use in resource-limited settings. Antiviral Res. 2014;107:31–4.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Siegel MO, Swierzbinski M, Kan VL, Parenti DM. Baseline E138 reverse transcriptase resistance-associated mutations in antiretroviral-naive HIV-infected patients. AIDS. 2012;26:1181–2.CrossRefPubMedGoogle Scholar
  57. 57.
    Jeulin H, Foissac M, Boyer L, Agrinier N, Perrier P, Kennel A, Velay A, Goehringer F, Henard S, Rabaud C, May T, Schvoerer E. Real-life rilpivirine resistance and potential emergence of an E138A-positive HIV strain in north-eastern France. J Antimicrob Chemother. 2014;69:3095–102.CrossRefPubMedGoogle Scholar
  58. 58.
    Gupta RK, Jordan MR, Sultan BJ, Hill A, Davis DH, Gregson J, Sawyer AW, Hamers RL, Ndembi N, Pillay D, Bertagnolio S. Global trends in antiretroviral resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: a global collaborative study and meta-regression analysis. Lancet. 2012;380:1250–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Pham QD, Wilson DP, Law MG, Kelleher AD, Zhang L. Global burden of transmitted HIV drug resistance and HIV-exposure categories: a systematic review and meta-analysis. AIDS. 2014;28:2751–62.CrossRefPubMedGoogle Scholar
  60. 60.
    Wittkop L, Gunthard HF, de Wolf F, Dunn D, Cozzi-Lepri A, de Luca A, Kücherer C, Obel N, von Wyl V, Masquelier B, Stephan C, Torti C, Antinori A, García F, Judd A, Porter K, Thiébaut R, Castro H, van Sighem AI, Colin C, Kjaer J, Lundgren JD, Paredes R, Pozniak A, Clotet B, Phillips A, Pillay D, Chêne G, EuroCoord-CHAIN Study Group. Effect of transmitted drug resistance on virological and immunological response to initial combination antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): a European multicohort study. Lancet Infect Dis. 2011;11:363–71.CrossRefPubMedGoogle Scholar
  61. 61.
    Bertagnolio S, Perno CF, Vella S, Pillay D. The impact of HIV drug resistance on the selection of first- and second-line art in resource-limited settings. J Infect Dis. 2013;207:S45–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Phanuphak P, Sirivichayakul S, Jiamsakul A, Sungkanuparph S, Kumarasamy N, Lee MP, Kumarasamy N, Lee MP, Sirisanthana T, Kantipong P, Lee C, Kamarulzaman A, Mustafa M, Ditangco R, Merati T, Ratanasuwan W, Singtoroj T, Kantor R. Transmitted drug resistance and antiretroviral treatment outcomes in nonsubtype B HIV1-infected patients in South East Asia. J Acquir Immune Defic Syndr. 2014;66:74–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hamers RL, Schuurman R, Sigaloff KCE, Wallis CL, Kityo C, Siwale M, Mandaliya K, Ive P, Botes ME, Wellington M, Osibogun A, Wit FW, van Vugt M, Stevens WS, de Wit TF, PharmAccess African Studies to Evaluate Resistance (PASER) Investigators. Effect of pretreatment HIV-1 drug resistance on immunological, virological, and drug-resistance outcomes of first-line antiretroviral treatment in sub-Saharan Africa: a multicentre cohort study. Lancet Infect Dis. 2012;12:307–17.CrossRefPubMedGoogle Scholar
  64. 64.
    Brumme CJ, Huber KD, Dong W, Poon AF, Harrigan PR, Sluis-Cremer N. Replication fitness of multiple nonnucleoside reverse transcriptase-resistant HIV-1 variants in the presence of etravirine measured by 454 deep sequencing. J Virol. 2013;87:8805–7.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Armstrong KL, Lee TH, Essex M. Replicative fitness costs of nonnucleoside reverse transcriptase inhibitor drug resistance mutations on HIV subtype C. Antimicrob Agents Chemother. 2011;55:2146–53.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wang J, Bambara RA, Demeter LM, Dykes C. Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions. J Virol. 2010;84:9377–89.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Collins JA, Thompson MG, Paintsil E, Ricketts M, Gedizor J, Alexander L. Competitive fitness of Nevirapine-resistant HIV-1 mutants. J Virol. 2004;78:603–11.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Iglesias-Ussel MD, Casado C, Yuste E, Olivares I, Lopez-Galindez C. In vitro analysis of HIV-1 resistance to nevirapine and fitness determination of resistant variants. J Gen Virol. 2002;83:93–101.CrossRefPubMedGoogle Scholar
  69. 69.
    Joly V, Descamps D, Peytavin G, Touati F, Mentre F, Duval X, Delarue S, Yeni P, Brun-Vezinet F. Evolution of HIV-1 resistance mutations in HIV-1-infected patients switched to antiretroviral therapy without NNRTIs. Antimicrob Agents Chemother. 2004;48:172–5.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Delaugerre C, Morand-Joubert L, Chaix ML, Picard O, Marcelin AG, Schneider V, Krivine A, Compagnucci A, Katlama C, Girard PM, Calvez V. Persistence of multidrug-resistant HIV-1 without antiretroviral treatment two years after sexual transmission. Antivir Ther. 2004;9:415–21.PubMedGoogle Scholar
  71. 71.
    Korval CE, Dykes C, Wang J, Demeter LM. Relative replicative fitness of efavirenz-resistant mutants of HIV-1: correlation with frequency during clinical therapy and evidence of compensation for the reduced fitness of K103N + L100I by the nucleoside resistance mutation L74V. Virology. 2006;353:184–92.CrossRefGoogle Scholar
  72. 72.
    Hu Z, Kuritzkes DR. Interaction of reverse transcriptase (RT) mutations conferring resistance to lamivudine and etravirine: effects on fitness and RT activity of human immunodeficiency virus type 1. J Virol. 2011;85:11309–14.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Xu HT, Asahchop EL, Oliveira M, Quashie PK, Quan Y, Brenner BG, Wainberg MA. Compensation by the E138K mutation in HIV-1 reverse transcriptase for deficits in viral replication capacity and enzyme processivity associated with the M184I/V mutations. J Virol. 2011;85:11300–8.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Geitmann M, Unge T, Danielson UH. Interaction kinetic characterization of HIV-1 reverse transcriptase non-nucleoside inhibitor resistance. J Med Chem. 2006;49:2375–87.CrossRefPubMedGoogle Scholar
  75. 75.
    Ren J, Stammers DK. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res. 2008;134:157–70.CrossRefPubMedGoogle Scholar
  76. 76.
    Winslow DL, Garber S, Reid C, Scarnati H, Baker D, Rayner MM, Anton ED. Selection conditions affect the evolution of specific mutations in the reverse transcriptase gene associated with resistance to DMP 266. AIDS. 1996;10:1205–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Corbau R, Mori J, Phillips C, Fishburn L, Martin A, Mowbray C, Panton W, Smith-Burchnell C, Thornberry A, Ringrose H, Knochel T, Irving S, Westby M, Wood A, Perros M. Lersivirine, a nonnucleoside reverse transcriptase inhibitor with activity against drug-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2010;54:4451–63.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Azijn H, Tirry I, Vingerhoets J, de Bethune MP, Kraus G, Boven K, Jochmans D, Van Craenenbroeck E, Picchio G, Rimsky LT. TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant HIV-1. Antimicrob Agents Chemother. 2010;54:718–27.CrossRefPubMedGoogle Scholar
  79. 79.
    Asahchop EL, Wainberg MA, Oliveira M, Xu H, Brenner BG, Moisi D, Ibanescu IR, Tremblay C. Distinct resistance patterns to etravirine and rilpivirine in viruses containing NNRTI mutations at baseline. Antimicrob Agents Chemother. 2010;54:718–27.CrossRefGoogle Scholar
  80. 80.
    Bacheler LT, Anton ED, Kudish P, Baker D, Bunville J, Krakowski K, Bolling L, Aujay M, Wang XV, Ellis D, Becker MF, Lasut AL, George HJ, Spalding DR, Hollis G, Abremski K. Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy. Antimicrob Agents Chemother. 2000;44:2475–84.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Reuman EC, Rhee SY, Holmes SP, Shafer RW. Constrained patterns of covariation and clustering of HIV-1 non-nucleoside reverse transcriptase inhibitor resistance mutations. J Antimicrob Chemother. 2010;65:1477–85.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Croxtall JD. Etravirine: a review of its use in the management of treatment-experienced patients with HIV-1 infection. Drugs. 2012;72:847–69.CrossRefPubMedGoogle Scholar
  83. 83.
    Marcelin AG, Descamps D, Tamalet C, Cottalorda J, Izopet J, Delaugerre C, Morand-Joubert L, Trabaud MA, Bettinger D, Rogez S, Ruffault A, Henquell C, Signori-Schmuck A, Bouvier-Alias M, Vallet S, Masquelier B, Flandre P, Calvez V. Emerging mutations and associated factors in patients displaying treatment failure on an etravirine-containing regimen. Antivir Ther. 2012;17:119–23.CrossRefPubMedGoogle Scholar
  84. 84.
    Rimsky L, Vingerhoets J, Van Eygen V, Eron J, Clotet B, Hoogstoel A, Boven K, Picchio G. Genotypic and phenotypic characterization of HIV-1 isolates obtained from patients on rilpivirine therapy experiencing virologic failure in the phase 3 ECHO and THRIVE studies: 48-week analysis. J Acquir Immune Defic Syndr. 2012;59:39–46.CrossRefPubMedGoogle Scholar
  85. 85.
    Ren J, Nichols CE, Chamberlain PP, Weaver KL, Short SA, Stammers DK. Crystal structures of HIV-1 reverse transcriptases mutated at codons 100, 106 and 108 and mechanisms of resistance to non-nucleoside inhibitors. J Mol Biol. 2004;336:569–78.CrossRefPubMedGoogle Scholar
  86. 86.
    Tambuyzer L, Vingerhoets J, Azijn H, Daems B, Nijs S, de Bethune MP, Picchio G. Characterization of genotypic and phenotypic changes in HIV-1-infected patients with virologic failure on an etravirine-containing regimen in the DUET-1 and DUET-2 clinical studies. AIDS Res Hum Retroviruses. 2010;26:1197–205.CrossRefPubMedGoogle Scholar
  87. 87.
    Ren J, Nichols CE, Stamp A, Chamberlain PP, Ferris R, Weaver KL, Short SA, Stammers DK. Structural insights into mechanisms of non-nucleoside drug resistance for HIV-1 reverse transcriptases mutated at codons 101 or 138. FEBS J. 2006;273:3850–60.CrossRefPubMedGoogle Scholar
  88. 88.
    Kulkarni R, Babaoglu K, Lansdon EB, Rimsky L, Van Eygen V, Picchio G, Svarovskaia E, Miller MD, White KL. The HIV-1 reverse transcriptase M184I mutation enhances the E138K-associated resistance to rilpivirine and decreases viral fitness. J Acquir Immune Defic Syndr. 2012;59:47–54.CrossRefPubMedGoogle Scholar
  89. 89.
    Gulick RM, Ribaudo HJ, Shikuma CM, Lustgarten S, Squires KE, Meyer 3rd WA, Acosta EP, Schackman BR, Pilcher CD, Murphy RL, Maher WE, Witt MD, Reichman RC, Snyder S, Klingman KL, Kuritzkes DR. Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. N Engl J Med. 2004;350:1850–61.CrossRefPubMedGoogle Scholar
  90. 90.
    Margot NA, Lu B, Cheng A, Miller MD. Resistance development over 144 weeks in treatment-naive patients receiving tenofovir disoproxil fumarate or stavudine with lamivudine and efavirenz in Study 903. HIV Med. 2006;7:442–50.CrossRefPubMedGoogle Scholar
  91. 91.
    Lindberg J, Sigurosson S, Lowgren S, Andersson HO, Sahlberg C, Noreen R, Fridborg K, Zhang H, Unge T. Structural basis for the inhibitory efficacy of efavirenz (DMP-266), MSC194 and PNU142721 towards the HIV-1 RT K103N mutant. Eur J Biochem. 2002;269:1670–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Rodriguez-Barrios F, Gago F. Understanding the basis of resistance in the irksome Lys103Asn HIV-1 reverse transcriptase mutant through targeted molecular dynamics simulations. J Am Chem Soc. 2004;126:15386–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Das K, Sarafianos SG, Clark Jr AD, Boyer PL, Hughes SH, Arnold E. Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. J Mol Biol. 2007;365:77–89.CrossRefPubMedGoogle Scholar
  94. 94.
    Ren J, Nichols C, Bird L, Chamberlain P, Weaver K, Short S, Stuart DI, Stammers DK. Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors. J Mol Biol. 2001;312:795–805.CrossRefPubMedGoogle Scholar
  95. 95.
    Sluis-Cremer N, Moore K, Radzio J, Sonza S, Tachedjian G. N348I in HIV-1 reverse transcriptase decreases susceptibility to tenofovir and etravirine in combination with other resistance mutations. AIDS. 2010;24:317–9.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Ehteshami M, Beilhartz GL, Scarth BJ, Tchesnokov EP, McCormick S, Wynhoven B, Harrigan PR, Götte M. Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3′-azido-3′-deoxythymidine through both RNase H-dependent and -independent mechanisms. J Biol Chem. 2008;283:22222–32.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Delviks-Frankenberry KA, Nikolenko GN, Boyer PL, Hughes SH, Coffin JM, Jere A, Pathak VK. HIV-1 reverse transcriptase connection subdomain mutations reduce template RNA degradation and enhance AZT excision. Proc Natl Acad Sci U S A. 2008;105:10943–8.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Nikolenko GN, Delviks-Frankenberry KA, Pathak VK. A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol. 2010;84:5238–49.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Biondi MJ, Beilhartz GL, McCormick S, Götte M. N348I in HIV-1 reverse transcriptase can counteract the nevirapine-mediated bias toward RNase H cleavage during plus-strand initiation. J Biol Chem. 2010;285:26966–75.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Schuckmann MM, Marchand B, Hachiya A, Kodama EN, Kirby KA, Singh K, Sarafianos SG. The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase decreases binding to nevirapine. J Biol Chem. 2010;285:38700–9.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Radzio J, Sluis-Cremer N. Subunit-specific mutational analysis of residue N348 in HIV-1 reverse transcriptase. Retrovirology. 2011;8:69.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Medicine, Division of Infectious DiseasesUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations