Graceful Degradation Under Noise on Brain Inspired Robot Controllers

  • Ricardo de Azambuja
  • Frederico B. Klein
  • Martin F. Stoelen
  • Samantha V. Adams
  • Angelo Cangelosi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9947)


How can we build robot controllers that are able to work under harsh conditions, but without experiencing catastrophic failures? As seen on the recent Fukushima’s nuclear disaster, standard robots break down when exposed to high radiation environments. Here we present the results from two arrangements of Spiking Neural Networks, based on the Liquid State Machine (LSM) framework, that were able to gracefully degrade under the effects of a noisy current injected directly into each simulated neuron. These noisy currents could be seen, in a simplified way, as the consequences of exposition to non-destructive radiation. The results show that not only can the systems withstand noise, but one of the configurations, the Modular Parallel LSM, actually improved its results, in a certain range, when the noise levels were increased. Also, the robot controllers implemented in this work are suitable to run on a modern, power efficient neuromorphic hardware such as SpiNNaker.


SNN Liquid state machines Robot control Noise Graceful degradation Robustness 



This work was in part supported by the CAPES Foundation, Ministry of Education of Brazil (scholarship BEX 1084/13-5), CNPq Brazil (scholarship 232590/2014-1) and UK EPSRC project BABEL (EP/J004561/1 and EP/J00457X/1).


  1. 1.
    de Azambuja, R., Cangelosi, A., Adams, S.: Diverse, noisy and parallel: a new spiking neural network approach for humanoid robot control. In: 2016 International Joint Conference on Neural Networks (IJCNN). p. In Press (In Press)Google Scholar
  2. 2.
    Benito-Len, J., Louis, E.D.: Essential tremor: emerging views of a common disorder. Nat. Clin.l Pract. Neurol. 2(12), 666–678 (2006)CrossRefGoogle Scholar
  3. 3.
    Chowdhury, F.K., Choe, D., Jevremovic, T., Tabib-Azar, M.: Design of MEMS based XOR and AND gates for rad-hard and very low power LSI mechanical processors. In: 2011 IEEE Sensors, pp. 762–765, October 2011Google Scholar
  4. 4.
    Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)Google Scholar
  5. 5.
    Furber, S.B., Lester, D.R., Plana, L.A., Garside, J.D., Painkras, E., Temple, S., Brown, A.D.: Overview of the SpiNNaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Herculano-Houzel, S.: Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS One 6(3), e17514 (2011)CrossRefGoogle Scholar
  7. 7.
    Indiveri, G., Linares-Barranco, B., Hamilton, T.J., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Hfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saïghi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic silicon neuron circuits. Neuromorphic Eng. 5, 73 (2011)Google Scholar
  8. 8.
    Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neural Comput. 17(8), 1715–1738 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kandil, M.R., Tohamy, S.A., Abdel Fattah, M., Ahmed, H.N., Farwiez, H.M.: Prevalence of chorea, dystonia and athetosis in assiut, egypt: a clinical and epidemiological study. Neuroepidemiology 13(5), 202–210 (1994)CrossRefGoogle Scholar
  10. 10.
    Kaul, H., Anders, M., Hsu, S., Agarwal, A., Krishnamurthy, R., Borkar, S.: Near-threshold voltage (NTV) design: opportunities and challenges. In: Proceedings of the 49th Annual Design Automation Conference, pp. 1153–1158. ACM (2012)Google Scholar
  11. 11.
    Kerns, S.E., Shafer, B.D., van Vonno, N., Barber, F.E.: The design of radiation-hardened ICs for space: a compendium of approaches. Proc. IEEE 76(11), 1470–1509 (1988)CrossRefGoogle Scholar
  12. 12.
    Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R.S., Yelick, K.: ExaScale computing study: technology challenges in achieving exascale systems. Technical report University of Notre Dame, September 2008Google Scholar
  13. 13.
    Maass, W.: Noise as a resource for computation and learning in networks of spiking neurons. Proc. IEEE 102(5), 860–880 (2014)CrossRefGoogle Scholar
  14. 14.
    Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural circuits. PLoS Comput. Biol. 3(1), e165 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Maass, W., Natschlger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Rogers, T.T., McClelland, J.L.: Parallel distributed processing at 25: further explorations in the microstructure of cognition. Cogn. Sci. 38(6), 1024–1077 (2014)CrossRefGoogle Scholar
  17. 17.
    Rohmer, E., Singh, S.P., Freese, M.: V-REP: A versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326. IEEE (2013)Google Scholar
  18. 18.
    Roy, D.S., Arons, A., Mitchell, T.I., Pignatelli, M., Ryan, T.J., Tonegawa, S.: Memory retrieval by activating engram cells in mouse models of early Alzheimers disease. Nature 531(7595), 508–512 (2016)CrossRefGoogle Scholar
  19. 19.
    Ryan, T.J., Roy, D.S., Pignatelli, M., Arons, A., Tonegawa, S.: Engram cells retain memory under retrograde amnesia. Science 348(6238), 1007–1013 (2015)CrossRefGoogle Scholar
  20. 20.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)CrossRefzbMATHGoogle Scholar
  21. 21.
    Schemmel, J., Brderle, D., Grbl, A., Hock, M., Meier, K., Millner, S.: A wafer-scale neuromorphic hardware system for large-scale neural modeling. In: Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS 2010), pp. 1947–1950 (2010)Google Scholar
  22. 22.
    Vertrees, S.M., Berman, S.A.: Chorea in adults: background, pathophysiology, epidemiology. Accessed: 19 Apr 2016
  23. 23.
    Waldrop, M.M.: More than moore. Nature 530(7589), 114 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ricardo de Azambuja
    • 1
    • 2
  • Frederico B. Klein
    • 1
  • Martin F. Stoelen
    • 1
  • Samantha V. Adams
    • 1
  • Angelo Cangelosi
    • 1
  1. 1.School of Computing, Electronics and MathematicsPlymouth UniversityPlymouthUK
  2. 2.CAPES FoundationMinistry of Education of BrazilBrasiliaBrazil

Personalised recommendations