Advertisement

A Preliminary Model for Understanding How Life Experiences Generate Human Emotions and Behavioural Responses

  • D. A. Irosh P. Fernando
  • Björn Rüffer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9949)

Abstract

Whilst human emotional and behaviour responses are generated via a complex mechanism, understanding this process is important for a broader range of applications that span over clinical disciplines including psychiatry and psychology, and computer science. Even though there is a large body of literature and established findings in clinical disciplines, these are under-utilised in developing more realistic computational models. This paper presents a preliminary model based on the integration of a number of established theories in clinical psychology and psychiatry through an interdisciplinary research effort.

Keywords

Modelling human behavior and emotions Emotional computing Affective computing Computational psychiatry 

References

  1. 1.
    Elliott, C.: The Affective Reasoner: A Process Model of Emotions in a Multi-Agent System. (1992) http://condor.depaul.edu/elliott/ar/papers/dis/elliott-phd.html
  2. 2.
    El-Nasr, M.S., Yen, J., Ioerger, T.R.: FLAME—fuzzy logic adaptive model of emotions. Auton. Agent. Multi-Agent Syst. 3, 219–257 (2000)CrossRefGoogle Scholar
  3. 3.
    Bates, J., Loyall, A., Reilly, W.: An architecture for action, emotion, and social behavior. In: 4th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Artificial Social Systems, pp. 55–68 (1994)Google Scholar
  4. 4.
    Velásquez, J.D.: Modeling emotions and other motivations in synthetic agents. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence, Providence, Rhode Island (1997)Google Scholar
  5. 5.
    Pynadath, D.V., Marsella, S.C.: PsychSim: modeling theory of mind with decision-theoretic agents. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland (2005)Google Scholar
  6. 6.
    Kazemifard, M., Ghasem-Aghaee, N., Ören, T.I.: Design and implementation of GEmA: A generic emotional agent. Expert Syst. Appl. 38, 2640–2652 (2011)CrossRefGoogle Scholar
  7. 7.
    Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1990)Google Scholar
  8. 8.
    Gross, J.J.: The emerging field of emotion regulation: An integrative review. Rev. General Psychol. 2, 271–299 (1998)CrossRefGoogle Scholar
  9. 9.
    Whiten, A.: Natural Theories of Mind: Evolution, Development, and Simulation of Everyday Mindreading: B. Blackwell, Oxford (1991)Google Scholar
  10. 10.
    Cacciabue, P.C.: Modelling and Simulation of Human Behaviour in System Control. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Klein, J., Moon, Y., Picard, R.W.: This computer responds to user frustration: Theory, design, and results. Interact. Comput. 14, 119–140 (2002)CrossRefGoogle Scholar
  12. 12.
    Maldonado, H., Lee, J.-E.R., Brave, S., Nass, C., Nakajima, H., Yamada, R., et al.: We learn better together: enhancing eLearning with emotional characters. In: Proceedings of th 2005 Conference on Computer Support for Collaborative Learning: Learning 2005: the next 10 years!, Taipei, Taiwan (2005)Google Scholar
  13. 13.
    Young, J.E.: Cognitive Therapy for Personality Disorders: A Schema-Focused Approach: Professional Resource Exchange (1999)Google Scholar
  14. 14.
    Young, J.E., Klosko, J.S., Weishaar, M.E.: Schema Therapy: A Practitioner’s Guide. Guilford Press (2003)Google Scholar
  15. 15.
    Greger, R., Windhorst, U.: Comprehensive Human Physiology: From Cellular Mechanisms to Integration. Springer, Heidelberg (2013)Google Scholar
  16. 16.
    Hage, M.P., Azar, S.T.: The link between thyroid function and depression. J. Thyroid Res. 2012, 590–648 (2012)CrossRefGoogle Scholar
  17. 17.
    Weiner, B.: An attributional theory of achievement motivation and emotion. Psychol. Rev. 92, 548 (1985)CrossRefGoogle Scholar
  18. 18.
    Garber, J., Seligman, M.E.: Human Helplessness: Theory and Applications. Cambridge Univ Press, Cambridge (1980)Google Scholar
  19. 19.
    Shaver, P., Schwartz, J., Kirson, D., O’Connor, C.: Emotion knowledge: further exploration of a prototype approach. J. Pers. Soc. Psychol. 52, 1061–1086 (1987)CrossRefGoogle Scholar
  20. 20.
    Folkman, S., Lazarus, R.S., Dunkel-Schetter, C., DeLongis, A., Gruen, R.J.: Dynamics of a stressful encounter: cognitive appraisal, coping, and encounter outcomes. J. Pers. Soc. Psychol. 50, 992 (1986)CrossRefGoogle Scholar
  21. 21.
    Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S., Cohen, J.D.: Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001)CrossRefGoogle Scholar
  22. 22.
    Casey, B.J., Tottenham, N., Fossella, J.: Clinical, imaging, lesion, and genetic approaches toward a model of cognitive control. Dev. Psychobiol. 40, 237–254 (2002)CrossRefGoogle Scholar
  23. 23.
    Seligman, M.E., Beagley, G.: Learned helplessness in the rat. J. Comp. Physiol. Psychol. 88, 534 (1975)CrossRefGoogle Scholar
  24. 24.
    Hiroto, D.S., Seligman, M.E.: Generality of learned helplessness in man. J. Pers. Soc. Psychol. 31, 311 (1975)CrossRefGoogle Scholar
  25. 25.
    Festinger, L.: A Theory of Cognitive Dissonance, vol. 2. Stanford University Press, Stanford (1962)Google Scholar
  26. 26.
    Fernando, D.A.I., Henskens, F.A.: A modified case-based reasoning approach for triaging psychiatric patients using a similarity measure derived from orthogonal vector projection. In: Chalup, S.K., Blair, A.D., Randall, M. (eds.) ACALCI 2015. LNCS, vol. 8955, pp. 360–372. Springer, Heidelberg (2015)Google Scholar
  27. 27.
    Minnis, H., Reekie, J., Young, D., O’connor, T., Ronald, A., Gray, A., et al.: Genetic, environmental and gender influences on attachment disorder behaviours. Br. J. Psychiatry 190, 490–495 (2007). 2007-06-01 00:00:00CrossRefGoogle Scholar
  28. 28.
    Breed, M., Sanchez, L.: Both environment and genetic makeup influence behavior. Nat. Educ. Knowl. 3, 68 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer Science, School of MedicinePublic Health University of NewcastleCallaghanAustralia
  2. 2.School of Mathematical and Physical Sciences, Faculty of Science and Information TechnologyUniversity of NewcastleCallaghanAustralia

Personalised recommendations