Advertisement

User Acceptance of a Therapeutic System that Enables Hand Training Exercises in a Motivating Environment

  • B. Radder
  • G. B. Prange-Lasonder
  • A. I. R. Kottink
  • L. Gaasbeek
  • J. Holmberg
  • A. Melendez-Calderon
  • J. H. Buurke
  • J. S. Rietman
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 15)

Abstract

In this study, a wearable soft-robotic glove that is connected to a computer with therapeutic software to train hand function (the ironHand therapeutic system, iH TS) is introduced. This study explored usability of the iH TS after first use without receiving instructions from researchers. The results on the System Usability Scale (SUS) are promising for acceptance of the iH TS in daily life (mean SUS score = 66.4). More research is needed to determine user acceptance and the effects of the therapeutic hand exercises after a longer acquaintance period.

Keywords

Computer Game Usability Test Hand Function User Acceptance Robotic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank our project partners: Hocoma AG and Bioservo Technologies AB for the provided systems and support during the study.

References

  1. 1.
    E. Carmeli, H. Patish, R. Coleman, The aging hand. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 58A, 146–152 (2003)CrossRefGoogle Scholar
  2. 2.
    H.C. Fischer, K. Stubblefield, T. Kline, X. Luo, R.V. Kenyon, D.G. Kamper, Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment. Top. Stroke Rehabil. 14, 1–12 (2007)CrossRefGoogle Scholar
  3. 3.
    V.K. Ranganathan, V. Siemionow, V. Sahgal, G.H. Yue, Effects of Aging on Hand Function. J. Am. Geriatr. Soc. 49, 1478–1484 (2001)CrossRefGoogle Scholar
  4. 4.
    P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, S. Leonhardt, A survey on robotic devices for upper limb rehabilitation. J. NeuroEng. Rehabil. 11 (2014)Google Scholar
  5. 5.
    J. Brooke, SUS-A quick and dirty usability scale. Usability Eval. Ind. 189 (1996)Google Scholar
  6. 6.
    A. Bangor, P.T. Kortum, J.T. Miller, An empirical evaluation of the system usability scale. Int. J. Hum. Comput. Interact. 24, 574–594 (2008)CrossRefGoogle Scholar
  7. 7.
    C. Abras, D. Maloney-Krichmar, J. Preece, User-centered design, in Encyclopedia of Human-Computer Interaction, vol. 37, ed. by W. Bainbridge (Sage Publications, Thousand Oaks, 2004), pp. 445–456Google Scholar
  8. 8.
    S.M. Nijenhuis, G.B. Prange, F. Amirabdollahian, P. Sale, F. Infarinato, N. Nasr et al., Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. J. Neuroeng. Rehabil. 12, 1 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Ni, Development and Testing of Sample Therapeutic Programs on the Microsoft Kinect for Children with Cerebral Palsy (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • B. Radder
    • 1
    • 2
  • G. B. Prange-Lasonder
    • 1
    • 2
  • A. I. R. Kottink
    • 1
    • 2
  • L. Gaasbeek
    • 3
  • J. Holmberg
    • 4
  • A. Melendez-Calderon
    • 5
    • 6
  • J. H. Buurke
    • 1
    • 2
    • 6
  • J. S. Rietman
    • 1
    • 2
    • 6
  1. 1.Roessingh Research and DevelopmentEnschedeThe Netherlands
  2. 2.University of TwenteEnschedeThe Netherlands
  3. 3.National Foundation of the ElderlyBunnikThe Netherlands
  4. 4.Eskilstuna Kommun Vård- och omsorgsförvaltningenEskilstunaSweden
  5. 5.Hocoma AGZürichSwitzerland
  6. 6.Department of Physical Medicine and RehabilitationNorthwestern UniversityChicagoUSA

Personalised recommendations