Advertisement

Optimizing Wearable Assistive Devices with Neuromuscular Models and Optimal Control

  • Manish Sreenivasa
  • Matthew Millard
  • Paul Manns
  • Katja Mombaur
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 15)

Abstract

The coupling of human movement dynamics with the function and design of wearable assistive devices is vital to better understand the interaction between the two. Advanced neuromuscular models and optimal control formulations provide the possibility to study and improve this interaction. In addition, optimal control can also be used to generate predictive simulations that generate novel movements for the human model under varying optimization criterion.

Keywords

Optimal Control Problem Torque Muscle Neural Excitation Multiple Shooting Method Optimal Control Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 687662 (SPEXOR project).

References

  1. 1.
    D. Anderson, M. Madigan, M. Nussbaum, Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J. Biomech. 40(14), 31053113 (2007)CrossRefGoogle Scholar
  2. 2.
    M.L. Felis, RBDL: an efficient rigid-body dynamics library using recursive algorithms. Auton. Robots 1–17 (2016)Google Scholar
  3. 3.
    P. De Leva, Adjustments to Zatsiorsky-Seluyanovs segment inertia parameters. J. Biomech. 29(9), 12231230 (1996)Google Scholar
  4. 4.
    S.S.U. Gamage, J. Lasenby, New least squares solutions for estimating the average centre of rotation and the axis of rotation. J. Biomech. 35(1), 8793 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Sreenivasa, C. Chamorro, D. Alvarado, O. Rettig, S. Wolf, Patient-specific bone geometry and segment inertia from mri images for model-based analysis of pathological gait. J. BiomechGoogle Scholar
  6. 6.
    D. Thelen, F. Anderson, S. Delp, Generatingdynamicsimulations of movement using computed muscle control. J. Biomech. 36(3), 321328 (2003)Google Scholar
  7. 7.
    R. Featherstone, Rigid Body Dynamics Algorithms (Springer, New York, 2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    K.H. Koch, K. Mombaur, Exoopt - a framework for patient centered design optimization of lower limb exoskeletons, in IEEE International Conference on Rehabilitation Robotics (2015)Google Scholar
  9. 9.
    H.G. Bock, K.J. Pitt, A multiple shooting algorithm for direct solution of optimal control problems, in 9th IFAC World Congress Budapest (1984)Google Scholar
  10. 10.
    D. Leineweber, I. Bauer, H. Bock, J. Schloder, An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects. Comput. Chem. Eng. 27(2), 157166 (2003)Google Scholar
  11. 11.
    K. Mombaur, Using optimization to create self-stable human-like running. Robotica 27(03), 321330 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Manish Sreenivasa
    • 1
  • Matthew Millard
    • 1
  • Paul Manns
    • 1
  • Katja Mombaur
    • 1
  1. 1.The Optimization in Robotics & Biomechanics GroupInterdisciplinary Center for Scientific Computing, Heidelberg UniversityHeidelbergGermany

Personalised recommendations