Pseudo-healthy Image Synthesis for White Matter Lesion Segmentation

  • Christopher Bowles
  • Chen Qin
  • Christian Ledig
  • Ricardo Guerrero
  • Roger Gunn
  • Alexander Hammers
  • Eleni Sakka
  • David Alexander Dickie
  • Maria Valdés Hernández
  • Natalie Royle
  • Joanna Wardlaw
  • Hanneke Rhodius-Meester
  • Betty Tijms
  • Afina W. Lemstra
  • Wiesje van der Flier
  • Frederik Barkhof
  • Philip Scheltens
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9968)

Abstract

White matter hyperintensities (WMH) seen on FLAIR images are established as a key indicator of Vascular Dementia (VD) and other pathologies. We propose a novel modality transformation technique to generate a subject-specific pathology-free synthetic FLAIR image from a T\(_1\) -weighted image. WMH are then accurately segmented by comparing this synthesized FLAIR image to the actually acquired FLAIR image. We term this method Pseudo-Healthy Image Synthesis (PHI-Syn). The method is evaluated on data from 42 stroke patients where we compare its performance to two commonly used methods from the Lesion Segmentation Toolbox. We show that the proposed method achieves superior performance for a number of metrics. Finally, we show that the features extracted from the WMH segmentations can be used to predict a Fazekas lesion score that supports the identification of VD in a dataset of 468 dementia patients. In this application the automatically calculated features perform comparably to clinically derived Fazekas scores.

Keywords

Weighted Image Vascular Dementia White Matter Hyperintensities Synthetic Image Flair Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Debette, S., Markus, H.S.: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666 (2010)CrossRefGoogle Scholar
  2. 2.
    Cao, T., Zach, C., Modla, S., Powell, D., Czymmek, K., Niethammer, M.: Registration for correlative microscopy using image analogies. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 296–306. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Roy, S., Carass, A., Prince, J.: A compressed sensing approach for MR tissue contrast synthesis. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 371–383. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22092-0_31 CrossRefGoogle Scholar
  4. 4.
    Tsunoda, Y., Moribe, M., Orii, H., Kawano, H., Maeda, H.: Pseudo-normal image synthesis from chest radiograph database for lung nodule detection. Adv. Intell. Syst. Comput. 268, 147–155 (2014)CrossRefGoogle Scholar
  5. 5.
    Ye, D.H., Zikic, D., Glocker, B., Criminisi, A., Konukoglu, E.: Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 606–613. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Fischl, B., Salat, D.H., van der Kouwe, A.J.W., Makris, N., Ségonne, F., Quinn, B.T., Dale, A.M.: Sequence-independent segmentation of magnetic resonance images. Neuroimage 23, S69–S84 (2004)CrossRefGoogle Scholar
  7. 7.
    Nguyen, H., Zhou, K., Vemulapalli, R.: Cross-domain synthesis of medical images using efficient location-sensitive deep network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 677–684. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24553-9_83 CrossRefGoogle Scholar
  8. 8.
    Kroon, D.-J., Slump, C.H.: MRI modalitiy transformation in demon registration. ISBI 2009, 963–966 (2009)Google Scholar
  9. 9.
    Roy, S., Carass, A., Prince, J.: Magnetic resonance image example based contrast synthesis. IEEE Trans. Med. Imaging 32(12), 2348–2363 (2013)CrossRefGoogle Scholar
  10. 10.
    Roy, S., Carass, A., Shiee, N., Pham, D.L.: MR contrast synthesis for lesion segmentation. ISBI 2010, 932–935 (2010)Google Scholar
  11. 11.
    Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)CrossRefGoogle Scholar
  12. 12.
    Heckemann, R.A., Ledig, C., Gray, K.R., Aljabar, P., Rueckert, D., Hajnal, J.V., Hammers, A.: Brain extraction using label propagation, group agreement: pincram. PloS ONE 10(7), e0129211 (2015)CrossRefGoogle Scholar
  13. 13.
    Ledig, C., Heckemann, R.A., Hammers, A., Lopez, J.C., Newcombe, V.F., Makropoulos, A., Lötjönen, J., Menon, D.K., Rueckert, D.: Robust whole-brain segmentation: application to traumatic brain injury. Med. Image Anal. 21(1), 40–58 (2015)CrossRefGoogle Scholar
  14. 14.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  15. 15.
    Huppertz, H.J., Wagner, J., Weber, B., House, P., Urbach, H.: Automated quantitative FLAIR analysis in hippocampal sclerosis. Epilepsy Res. 97(1), 146–156 (2011)CrossRefGoogle Scholar
  16. 16.
    Heye, A.K., Thrippleton, M.J., Chappell, F.M., Hernández, M., Armitage, P.A., Makin, S.D., Maniega, S.M., Sakka, E., Flatman, P.W., Dennis, M.S., Wardlaw, J.M.: Blood pressure, sodium: association with MRI markers in cerebral small vessel disease. J. Cereb. Blood Flow Metab. 36(1), 264–274 (2016)Google Scholar
  17. 17.
    Hernández, M.D.C.V., Armitage, P.A., Thrippleton, M.J., Chappell, F., Sandeman, E., Maniega, S.M., Shuler, K., Wardlaw, J.M.: Rationale, design and methodology of the image analysis protocol for studies of patients with cerebral small vessel disease and mild stroke. Brain Behav. 5(12), e00415 (2015)Google Scholar
  18. 18.
    Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., Hoshi, M., Ilg, R., Schmid, V.J., Zimmer, C., Hemmer, B.: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59(4), 3774–3783 (2012)CrossRefGoogle Scholar
  19. 19.
    Fazekas, F., Chawluk, J.B., Alavi, A., Hurtig, H.I., Zimmerman, R.A.: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am. J. Neuroradiol. 8(3), 421–426 (1987)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Christopher Bowles
    • 1
  • Chen Qin
    • 1
  • Christian Ledig
    • 1
  • Ricardo Guerrero
    • 1
  • Roger Gunn
    • 2
    • 7
  • Alexander Hammers
    • 3
  • Eleni Sakka
    • 4
  • David Alexander Dickie
    • 4
  • Maria Valdés Hernández
    • 4
  • Natalie Royle
    • 4
    • 8
  • Joanna Wardlaw
    • 4
  • Hanneke Rhodius-Meester
    • 5
  • Betty Tijms
    • 5
  • Afina W. Lemstra
    • 5
  • Wiesje van der Flier
    • 5
  • Frederik Barkhof
    • 6
  • Philip Scheltens
    • 5
  • Daniel Rueckert
    • 1
  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.Imanova Ltd.LondonUK
  3. 3.PET Centre, Kings College LondonLondonUK
  4. 4.Department of Neuroimaging SciencesUniversity of EdinburghEdinburghUK
  5. 5.Alzheimer Center and Department of NeurologyVU University Medical Center, Amsterdam NeuroscienceAmsterdamThe Netherlands
  6. 6.Department of Radiology and Nuclear MedicineVU University Medical Center, Amsterdam NeuroscienceAmsterdamThe Netherlands
  7. 7.Department of MedicineImperial College LondonLondonUK
  8. 8.IXICO Technologies Ltd.LondonUK

Personalised recommendations