Image-Based PSF Estimation for Ultrasound Training Simulation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9968)

Abstract

A key aspect for virtual-reality based ultrasound training is the plausible simulation of the characteristic noise pattern known as ultrasonic speckle. The formation of ultrasonic speckle can be approximated efficiently by convolving the ultrasound point-spread function (PSF) with a distribution of point scatterers. Recent work extracts the latter directly from ultrasound images for use in forward simulation, assuming that the PSF can be known, e.g., from experiments. In this paper, we investigate the problem of automatically estimating an unknown PSF for the purpose of ultrasound simulation, such as to use in convolution-based ultrasound image formation. Our method estimates the PSF directly from an ultrasound image, based on homomorphic filtering in the cepstrum domain. It robustly captures local changes in the PSF as a function of depth, and hence is able to reproduce continuous ultrasound beam profiles. We compare our method to numerical simulations as the ground truth to study PSF estimation accuracy, achieving small approximation errors of \({\le }15\,\%\) FWHM. We also demonstrate simulated in-vivo images, with beam profiles estimated from real images.

References

  1. 1.
    Abeyratne, U.R., Petropulu, A.P., Reid, J.M.: Higher order spectra based deconvolution of ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(6), 1064–1075 (1995)CrossRefGoogle Scholar
  2. 2.
    Bamber, J.C., Dickinson, R.J.: Ultrasonic b-scanning: a computer simulation. Phys. Med. Biol. 25(3), 463 (1980)CrossRefGoogle Scholar
  3. 3.
    Bhanu, B., McClellan, J.H.: On the computation of the complex cepstrum. IEEE Trans. Acoust. Speech Signal Process. 28(5), 583–585 (1980)CrossRefGoogle Scholar
  4. 4.
    Bürger, B., Bettinghausen, S., Rädle, M., Hesser, J.: Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE Trans. Med. Imaging 32(3), 609–618 (2013)CrossRefGoogle Scholar
  5. 5.
    Gao, H., Choi, H., Claus, P., Boonen, S., Jaecques, S., Van Lenthe, G., Van der Perre, G., Lauriks, W., D’hooge, J.: A fast convolution-based methodology to simulate 2-d/3-d cardiac ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 404–409 (2009)CrossRefGoogle Scholar
  6. 6.
    Jensen, J., Leeman, S.: Nonparametric estimation of ultrasound pulses. IEEE Trans. Biomed. Eng. 41(10), 929–936 (1994)CrossRefGoogle Scholar
  7. 7.
    Jensen, J., Mathorne, J., Gravesen, T., Stage, B.: Deconvolution of in vivo ultrasound b-mode images. Ultrason. Imaging 15(2), 122–133 (1993)Google Scholar
  8. 8.
    Jensen, J.A.: Deconvolution of ultrasound images. Ultrason. Imaging 14(1), 1–15 (1992)CrossRefGoogle Scholar
  9. 9.
    Kobayashi, T., Imai, S.: Spectral analysis using generalized cepstrum. IEEE Trans. Acoust. Speech Signal Process. 32(5), 1087–1089 (1984)CrossRefGoogle Scholar
  10. 10.
    Lee, J.K., Kabrisky, M., Oxley, M.E., Rogers, S.K., Ruck, D.W.: The complex cepstrum applied to two-dimensional images. Pattern Recognit. 26(10), 1579–1592 (1993)CrossRefGoogle Scholar
  11. 11.
    Mattausch, O., Goksel, O.: Scatterer reconstruction and parametrization of homogeneous tissue for ultrasound image simulation. In: IEEE EMBC, pp. 6350–6353, August 2015Google Scholar
  12. 12.
    Meunier, J., Bertrand, M.: Ultrasonic texture motion analysis: theory and simulation. IEEE Trans. Med. Imaging 14(2), 293–300 (1995)CrossRefGoogle Scholar
  13. 13.
    Meunier, J., Bertrand, M., Mailloux, G.: A model for dynamic texture analysis in two-dimensional echocardiograms of the myocardium. In: SPI 0768, pp. 193–200 (1987)Google Scholar
  14. 14.
    Michailovich, O., Adam, D.: Phase unwrapping for 2-d blind deconvolution of ultrasound images. IEEE Trans. Med. Imaging 23(1), 7–25 (2004)CrossRefGoogle Scholar
  15. 15.
    Oosterveld, B., Thijssen, J., Verhoef, W.: Texture of b-mode echograms: 3-d simulations and experiments of the effects of diffraction and scatterer density. Ultrason. Imaging 7(2), 142–160 (1985)CrossRefGoogle Scholar
  16. 16.
    Oppenheim, A.V., Schafer, R.W., Buck, J.R., et al.: Discrete-Time Signal Processing, vol. 2. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  17. 17.
    Reis, G., Lappe, B., Kohn, S., Weber, C., Bertram, M., Hagen, H.: Towards a virtual echocardiographic tutoring system. In: Linsen, L., Hagen, H., Hamann, B. (eds.) Visualization in Medicine and Life Sciences, pp. 99–119. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Taxt, T.: Restoration of medical ultrasound images using two-dimensional homomorphic deconvolution. IEEE Trans. UFFC 42(4), 543–554 (1995)CrossRefGoogle Scholar
  19. 19.
    Taxt, T.: Three-dimensional blind deconvolution of ultrasound images. IEEE Trans. UFFC 48(4), 867–871 (2001)CrossRefGoogle Scholar
  20. 20.
    Taxt, T.: Comparison of cepstrum based methods for radial blind deconvolution of ultrasound images. IEEE Trans. UFFC 1417(44), 666–674 (1997)CrossRefGoogle Scholar
  21. 21.
    Varray, F., Liebgott, H., Cachard, C., Vray, D.: Fast simulation of realistic pseudo-acoustic nonlinear radio-frequency ultrasound images. In: 2014 IEEE International Ultrasonics Symposium, pp. 2217–2220, September 2014Google Scholar
  22. 22.
    Wan, S., Raju, B.I., Srinivasan, M.A.: Robust deconvolution of high-frequency ultrasound images using higher-order spectral analysis and wavelets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1286–1295 (2003)CrossRefGoogle Scholar
  23. 23.
    Yamada, I., Sakaniwa, K.: An optimal design of homomorphic deconvolution system. In: IEEE Symposium on Circuits and Systems. pp. 1344–1349, May 1989Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Computer-Assisted Applications in Medicine GroupETH ZurichZürichSwitzerland

Personalised recommendations