Observability of Linear Differential-Algebraic Systems: A Survey

Chapter
Part of the Differential-Algebraic Equations Forum book series (DAEF)

Abstract

We investigate different concepts related to observability of linear constant coefficient differential-algebraic equations. Regularity, which, loosely speaking, guarantees existence and uniqueness of solutions for any inhomogeneity, is not required in this article. Concepts like impulse observability, observability at infinity, behavioral observability, strong and complete observability are described and defined in the time-domain. Special emphasis is placed on a normal form under output injection, state space and output space transformation. This normal form together with duality is exploited to derive Hautus-type criteria for observability. We also discuss geometric criteria, Kalman decompositions and detectability. Some new results on stabilization by output injection are proved.

Keywords

Controllability Differential-algebraic equations Duality Hautus Test Kalman decomposition Observability Output injection Wong sequences 

Mathematics Subject Classification (2010)

93B07 34A09 93B10 93B25 93B27 93B05 93C05 

Notes

Acknowledgements

We thank the referees of this article for their valuable comments which very much helped to improve the manuscript.

References

  1. 1.
    Aplevich, J.D.: Minimal representations of implicit linear systems. Automatica 21 (3), 259–269 (1985). http://dx.doi.org/10.1016/0005-1098(85)90059-7 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aplevich, J.D.: Implicit Linear Systems, vol. 152. Lecture Notes in Control and Information Sciences. Springer, Berlin (1991). http://dx.doi.org/10.1007/BFb0044363 CrossRefMATHGoogle Scholar
  3. 3.
    Armentano, V.A.: The pencil (sEA) and controllability-observability for generalized linear systems: a geometric approach. SIAM J. Control Optim. 24, 616–638 (1986). http://dx.doi.org/10.1137/0324037 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory, vol. 264. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1984). http://dx.doi.org/10.1007/978-3-642-69512-4 MATHGoogle Scholar
  5. 5.
    Aubin, J.P., Frankowska, H.: Set Valued Analysis. Birkhäuser, Boston (1990). http://dx.doi.org/10.1007/978-0-8176-4848-0 MATHGoogle Scholar
  6. 6.
    Banaszuk, A., Kociȩcki, M., Przyłuski, K.M.: Implicit linear discrete-time systems. Math. Control Signals Syst. 3 (3), 271–297 (1990). http://dx.doi.org/10.1007/BF02551372 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Banaszuk, A., Kociȩcki, M., Przyłuski, K.M.: Remarks on observability of implicit linear discrete-time systems. Automatica 26 (2), 421–423 (1990). http://dx.doi.org/10.1016/0005-1098(90)90140-D MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Banaszuk, A., Kociȩcki, M., Lewis, F.L.: Kalman decomposition for implicit linear systems. IEEE Trans. Autom. Control 37 (10), 1509–1514 (1992). http://dx.doi.org/10.1109/9.256370 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Banaszuk, A., Kociȩcki, M., Przyłuski, K.M.: On duality between observation and control for implicit linear discrete-time systems. IMA J. Math. Control Inf. 13, 41–61 (1996). http://dx.doi.org/10.1093/imamci/13.1.41 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Baser, U., Özçaldiran, K.: On observability of singular systems. Circuits Systems Signal Process. 11 (3), 421–430 (1992). http://dx.doi.org/10.1007/BF01190985 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Basile, G., Marro, G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice-Hall, Englewood Cliffs, NJ (1992)MATHGoogle Scholar
  12. 12.
    Belevitch, V.: Classical Network Theory. Holden-Day, San Francisco (1968)MATHGoogle Scholar
  13. 13.
    Bender, D.J., Laub, A.J.: Controllability and observability at infinity of multivariable linear second-order models. IEEE Trans. Autom. Control AC-30, 1234–1237 (1985). http://dx.doi.org/10.1109/TAC.1985.1103869 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Berger, T.: On differential-algebraic control systems. Ph.D. thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Ilmenau, Germany (2014). http://www.db-thueringen.de/servlets/DocumentServlet?id=22652
  15. 15.
    Berger, T., Reis, T.: Controllability of linear differential-algebraic systems - a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, pp. 1–61. Springer, Berlin (2013). http://dx.doi.org/10.1007/978-3-642-34928-7_1 CrossRefGoogle Scholar
  16. 16.
    Berger, T., Reis, T.: Regularization of linear time-invariant differential-algebraic systems. Syst. Control Lett. 78, 40–46 (2015). http://dx.doi.org/10.1016/j.sysconle.2015.01.013 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Berger, T., Trenn, S.: The quasi-Kronecker form for matrix pencils. SIAM J. Matrix Anal. Appl. 33 (2), 336–368 (2012). http://dx.doi.org/10.1137/110826278 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Berger, T., Trenn, S.: Addition to “The quasi-Kronecker form for matrix pencils”. SIAM J. Matrix Anal. Appl. 34 (1), 94–101 (2013). http://dx.doi.org/10.1137/120883244 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Berger, T., Trenn, S.: Kalman controllability decompositions for differential-algebraic systems. Syst. Control Lett. 71, 54–61 (2014). http://dx.doi.org/10.1016/j.sysconle.2014.06.004 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Berger, T., Ilchmann, A., Trenn, S.: The quasi-Weierstraß form for regular matrix pencils. Linear Alg. Appl. 436 (10), 4052–4069 (2012). http://dx.doi.org/10.1016/j.laa.2009.12.036 CrossRefMATHGoogle Scholar
  21. 21.
    Bernhard, P.: On singular implicit linear dynamical systems. SIAM J. Control Optim. 20 (5), 612–633 (1982). http://dx.doi.org/10.1137/0320046 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Birkhoff, G., MacLane, S.: A Survey of Modern Algebra, 4th edn. Macmillan Publishing Co, New York (1977)MATHGoogle Scholar
  23. 23.
    Bonilla, E.M., Malabre, M.: On the control of linear systems having internal variations. Automatica 39, 1989–1996 (2003)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Bunse-Gerstner, A., Mehrmann, V., Nichols, N.K.: Regularization of descriptor systems by output feedback. IEEE Trans. Autom. Control 39 (8), 1742–1748 (1994). http://dx.doi.org/10.1109/9.310065 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Bunse-Gerstner, A., Byers, R., Mehrmann, V., Nichols, N.K.: Feedback design for regularizing descriptor systems. Linear Algebra Appl. 299, 119–151 (1999). http://dx.doi.org/10.1016/S0024-3795(99)00167-6
  26. 26.
    Byers, R., Geerts, A.H.W.T., Mehrmann, V.: Descriptor systems without controllability at infinity. SIAM J. Control Optim. 35, 462–479 (1997). http://dx.doi.org/10.1137/S0363012994269818 MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Campbell, S.L., Nichols, N.K., Terrell, W.J.: Duality, observability, and controllability for linear time-varying descriptor systems. Circuits Syst. Signal Process. 10 (4), 455–470 (1991). http://dx.doi.org/10.1007/BF01194883 MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Campbell, S.L., Kunkel, P., Mehrmann, V.: Regularization of linear and nonlinear descriptor systems. In: Biegler, L.T., Campbell, S.L., Mehrmann, V. (eds.) Control and Optimization with Differential-Algebraic Constraints. Advances in Design and Control, vol. 23, pp. 17–36. SIAM, Philadelphia (2012)CrossRefGoogle Scholar
  29. 29.
    Christodoulou, M.A., Paraskevopoulos, P.N.: Solvability, controllability, and observability of singular systems. J. Optim. Theorem Appl. 45, 53–72 (1985). http://dx.doi.org/10.1007/BF00940813 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Cobb, J.D.: On the solution of linear differential equations with singular coefficients. J. Diff. Equ. 46, 310–323 (1982). http://dx.doi.org/10.1016/0022-0396(82)90097-3
  31. 31.
    Cobb, J.D.: Controllability, observability and duality in singular systems. IEEE Trans. Autom. Control AC-29, 1076–1082 (1984). http://dx.doi.org/10.1109/TAC.1984.1103451 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Dai, L.: Singular Control Systems, vol. 118. Lecture Notes in Control and Information Sciences. Springer, Berlin (1989). http://dx.doi.org/10.1007/BFb0002475 CrossRefMATHGoogle Scholar
  33. 33.
    Darouach, M., Boutayeb, M., Zasadzinski, M.: Kalman filtering for continuous descriptor systems. In: Proceedings of American Control Conference 1997, pp. 2108–2112. Albuquerque, NM (1997). http://dx.doi.org/10.1109/ACC.1997.611062
  34. 34.
    Dieudonné, J.: Sur la réduction canonique des couples des matrices. Bull. de la Societé Mathématique de France 74, 130–146 (1946). http://eudml.org/doc/86796 MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Frankowska, H.: On controllability and observability of implicit systems. Syst. Control Lett. 14, 219–225 (1990). http://dx.doi.org/10.1016/0167-6911(90)90016-N MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Gantmacher, F.R.: The Theory of Matrices, vols. I & II. Chelsea, New York (1959)MATHGoogle Scholar
  37. 37.
    Geerts, A.H.W.T.: Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant linear systems: the general case. Linear Alg. Appl. 181, 111–130 (1993). http://dx.doi.org/10.1016/0024-3795(93)90027-L CrossRefMATHGoogle Scholar
  38. 38.
    Geerts, A.H.W.T., Mehrmann, V.: Linear differential equations with constant coefficients: a distributional approach. Technical Report SFB 343 90-073, Bielefeld University, Germany (1990)Google Scholar
  39. 39.
    Hautus, M.L.J.: Controllability and observability condition for linear autonomous systems. Ned. Akademie. Wetenschappen, Proc. Ser. A 72, 443–448 (1969)Google Scholar
  40. 40.
    Hou, M., Müller, P.C.: Causal observability of descriptor systems. IEEE Trans. Autom. Control 44 (1), 158–163 (1999). http://dx.doi.org/10.1109/9.739111 MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Hou, M., Patton, R.: Input observability and input reconstruction. Automatica 34 (6), 789–794 (1988). http://dx.doi.org/10.1016/S0005-1098(98)00021-1
  42. 42.
    Ilchmann, A., Mehrmann, V.: A behavioural approach to time-varying linear systems, Part 1: general theory. SIAM J. Control Optim. 44 (5), 1725–1747 (2005). http://dx.doi.org/10.1137/S0363012904442239 MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Ishihara, J.Y., Terra, M.H.: Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Autom. Control 46 (6), 991–994 (2001). http://dx.doi.org/10.1109/9.928613 MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Kalman, R.E.: On the general theory of control systems. In: Proceedings of the First International Congress on Automatic Control, Moscow 1960, pp. 481–493. Butterworth’s, London (1961)Google Scholar
  45. 45.
    Kalman, R.E.: Canonical structure of linear dynamical systems. Proc. Nat. Acad. Sci. USA 48 (4), 596–600 (1962). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC220821 MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Kalman, R.E.: Mathematical description of linear dynamical systems. SIAM J. Control Optim. 1, 152–192 (1963). http://dx.doi.org/10.1137/0301010 MathSciNetMATHGoogle Scholar
  47. 47.
    Karcanias, N.: Regular state-space realizations of singular system control problems. In: Proceedings of 26th IEEE Conference Decision Control, pp. 1144–1146. Los Angeles, CA (1987). http://dx.doi.org/10.1109/CDC.1987.272588
  48. 48.
    Knobloch, H.W., Kwakernaak, H.: Lineare Kontrolltheorie. Springer, Berlin (1985)CrossRefMATHGoogle Scholar
  49. 49.
    Koumboulis, F.N., Mertzios, B.G.: On Kalman’s controllability and observability criteria for singular systems. Circuits Syst. Signal Process. 18 (3), 269–290 (1999). http://dx.doi.org/10.1007/BF01225698 MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Kronecker, L.: Algebraische Reduction der Schaaren bilinearer Formen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu, Berlin, pp. 1225–1237 (1890)Google Scholar
  51. 51.
    Kuijper, M.: First-Order Representations of Linear Systems. Birkhäuser, Boston (1994). http://dx.doi.org/10.1007/978-1-4612-0259-2 CrossRefMATHGoogle Scholar
  52. 52.
    Kunkel, P., Mehrmann, V.: Differential-algebraic equations. analysis and numerical solution. EMS Publishing House, Zürich, Switzerland (2006). http://dx.doi.org/10.4171/017
  53. 53.
    Lewis, F.L.: A survey of linear singular systems. IEEE Proc. Circuits, Syst. Signal Process. 5 (1), 3–36 (1986). http://dx.doi.org/10.1007/BF01600184
  54. 54.
    Lewis, F.L.: A tutorial on the geometric analysis of linear time-invariant implicit systems. Automatica 28 (1), 119–137 (1992). http://dx.doi.org/10.1016/0005-1098(92)90012-5
  55. 55.
    Loiseau, J.J., Lebret, G.: A new canonical form for descriptor systems with outputs. In: Bensoussan, A., Lions, J.L. (eds.) Analysis and Optimization of Systems. Lecture Notes in Control and Information Sciences, vol. 144, pp. 371–380. Springer, Berlin (1990). http://dx.doi.org/10.1007/BFb0120060 Google Scholar
  56. 56.
    Loiseau, J.J., Özçaldiran, K., Malabre, M., Karcanias, N.: Feedback canonical forms of singular systems. Kybernetika 27 (4), 289–305 (1991). http://dml.cz/dmlcz/124568 MathSciNetMATHGoogle Scholar
  57. 57.
    Lomadze, V.: Duality in the behavioral systems theory. Automatica 49 (5), 1510–1514 (2013). http://dx.doi.org/10.1016/j.automatica.2013.02.007 MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Luenberger, D.G.: Observing a state of a linear system. IEEE Trans. Mil. Electron. MIL-8, 74–80 (1964). http://dx.doi.org/10.1109/TME.1964.4323124 CrossRefGoogle Scholar
  59. 59.
    Luenberger, D.G.: Observers for multivariable systems. IEEE Trans. Autom. Control AC-11 (2), 190–197 (1966). http://dx.doi.org/10.1109/TAC.1966.1098323 MathSciNetCrossRefGoogle Scholar
  60. 60.
    Luenberger, D.G.: An introduction to observers. IEEE Trans. Autom. Control 16 (6), 596–602 (1971). http://dx.doi.org/10.1109/TAC.1971.1099826 MathSciNetCrossRefGoogle Scholar
  61. 61.
    Malabre, M.: More geometry about singular systems. IEEE Press, New York (1987). http://dx.doi.org/10.1109/CDC.1987.272585 CrossRefMATHGoogle Scholar
  62. 62.
    Malabre, M.: Generalized linear systems: geometric and structural approaches. Linear Algebra Appl. 122,123,124, 591–621 (1989). http://dx.doi.org/10.1016/0024-3795(89)90668-X
  63. 63.
    Mertzios, B.G., Christodoulou, M.A., Syrmos, B.L., Lewis, F.L.: Direct controllability and observability time domain conditions of singular systems. IEEE Trans. Autom. Control 33 (8), 788–791 (1988). http://dx.doi.org/10.1109/9.1302 MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Morse, A.S.: Structural invariants of linear multivariable systems. SIAM J. Control Optim. 11, 446–465 (1973). http://dx.doi.org/10.1137/0311037 MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Özçaldiran, K.: A geometric characterization of the reachable and controllable subspaces of descriptor systems. IEEE Proc. Circuits Syst. Signal Process. 5, 37–48 (1986). http://dx.doi.org/10.1007/BF01600185 MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Özçaldiran, K., Haliločlu, L.: Structural properties of singular systems. Kybernetika 29 (6), 518–546 (1993). http://dml.cz/dmlcz/125040 MathSciNetMATHGoogle Scholar
  67. 67.
    Özçaldiran, K., Lewis, F.L.: Generalized reachability subspaces for singular systems. SIAM J. Control Optim. 27, 495–510 (1989). http://dx.doi.org/10.1137/0327026 MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Özçaldiran, K., Fountain, D.W., Lewis, F.L.: Some generalized notions of observability. IEEE Trans. Autom. Control 37 (6), 856–860 (1992). http://dx.doi.org/10.1109/9.256347 MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Petreczky, M., Tanwani, A., Trenn, S.: Observability of switched linear systems. In: Djemai, M., Defoort, M. (eds.) Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences, vol. 457, pp. 205–240. Springer, Berlin (2015). http://dx.doi.org/10.1007/978-3-319-10795-0_8 Google Scholar
  70. 70.
    Polderman, J.W., Willems, J.C.: Introduction to Mathematical Systems Theory. A Behavioral Approach. Springer, New York (1998). http://dx.doi.org/10.1007/978-1-4757-2953-5 CrossRefMATHGoogle Scholar
  71. 71.
    Popov, V.M.: Hyperstability of Control Systems. Springer, Berlin (1973). Translation based on a revised text prepared shortly after the publication of the Romanian ed. 1966Google Scholar
  72. 72.
    Rabier, P.J., Rheinboldt, W.C.: Classical and generalized solutions of time-dependent linear differential-algebraic equations. Linear Algebra Appl. 245, 259–293 (1996). http://dx.doi.org/10.1016/0024-3795(94)00243-6
  73. 73.
    Rosenbrock, H.H.: Structural properties of linear dynamical systems. Int. J. Control 20, 191–202 (1974). http://dx.doi.org/10.1080/00207177408932729 MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)MATHGoogle Scholar
  75. 75.
    Schwartz, L.: Théorie des Distributions I,II. No. IX,X in Publications de l’institut de mathématique de l’Universite de Strasbourg. Hermann, Paris (1950, 1951)Google Scholar
  76. 76.
    Trenn, S.: Distributional differential algebraic equations. Ph.D. thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Ilmenau, Germany (2009). http://www.db-thueringen.de/servlets/DocumentServlet?id=13581
  77. 77.
    Trenn, S.: Regularity of distributional differential algebraic equations. Math. Control Signals Syst. 21 (3), 229–264 (2009). http://dx.doi.org/10.1007/s00498-009-0045-4 MathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    Trenn, S.: Solution concepts for linear DAEs: a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, pp. 137–172. Springer, Berlin (2013). http://dx.doi.org/10.1007/978-3-642-34928-7_4 CrossRefGoogle Scholar
  79. 79.
    Trentelman, H.L., Stoorvogel, A.A., Hautus, M.L.J.: Control Theory for Linear Systems. Communications and Control Engineering. Springer, London (2001). http://dx.doi.org/10.1007/978-1-4471-0339-4 CrossRefMATHGoogle Scholar
  80. 80.
    van der Schaft, A.J., Schumacher, J.M.H.: The complementary-slackness class of hybrid systems. Math. Control Signals Syst. 9, 266–301 (1996). http://dx.doi.org/10.1007/BF02551330 MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Verghese, G.C.: Further notes on singular systems. In: Proceedings of Joint American Control Conference (1981). Paper TA-4BGoogle Scholar
  82. 82.
    Verghese, G.C., Levy, B.C., Kailath, T.: A generalized state-space for singular systems. IEEE Trans. Autom. Control AC-26 (4), 811–831 (1981)MathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    Weierstrass, K.: Zur Theorie der bilinearen und quadratischen Formen. Berl. Monatsb. pp. 310–338 (1868)Google Scholar
  84. 84.
    Willems, J.C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Autom. Control AC-36 (3), 259–294 (1991). http://dx.doi.org/10.1109/9.73561 MathSciNetCrossRefMATHGoogle Scholar
  85. 85.
    Willems, J.C.: The behavioral approach to open and interconnected systems. IEEE Control Systems Magazine 27 (6), 46–99 (2007). http://dx.doi.org/10.1109/MCS.2007.906923 MathSciNetCrossRefGoogle Scholar
  86. 86.
    Wong, K.T.: The eigenvalue problem λ T x + Sx. J. Diff. Equ. 16, 270–280 (1974). http://dx.doi.org/10.1016/0022-0396(74)90014-X
  87. 87.
    Wonham, W.M.: Linear Multivariable Control: A Geometric Approach, 3rd edn. Springer, New York (1985)CrossRefMATHGoogle Scholar
  88. 88.
    Yip, E.L., Sincovec, R.F.: Solvability, controllability and observability of continuous descriptor systems. IEEE Trans. Autom. Control AC-26, 702–707 (1981). http://dx.doi.org/10.1109/TAC.1981.1102699 MathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    Zhou, Z., Shayman, M.A., Tarn, T.J.: Singular systems: a new approach in the time domain. IEEE Trans. Autom. Control 32 (1), 42–50 (1987). http://dx.doi.org/10.1109/TAC.1987.1104430 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fachbereich MathematikUniversität HamburgHamburgGermany
  2. 2.Fachbereich MathematikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations