Advertisement

Model Order Reduction for Differential-Algebraic Equations: A Survey

  • Peter BennerEmail author
  • Tatjana Stykel
Chapter
Part of the Differential-Algebraic Equations Forum book series (DAEF)

Abstract

In this paper, we discuss the model order reduction problem for descriptor systems, that is, systems with dynamics described by differential-algebraic equations. We focus on linear descriptor systems as a broad variety of methods for these exist, while model order reduction for nonlinear descriptor systems has not received sufficient attention up to now. Model order reduction for linear state-space systems has been a topic of research for about 50 years at the time of writing, and by now can be considered as a mature field. The extension to linear descriptor systems usually requires extra treatment of the constraints imposed by the algebraic part of the system. For almost all methods, this causes some technical difficulties, and these have only been thoroughly addressed in the last decade. We will focus on these developments in particular for the popular methods related to balanced truncation and rational interpolation. We will review efforts in extending these approaches to descriptor systems, and also add the extension of the so-called stochastic balanced truncation method to descriptor systems which so far cannot be found in the literature.

Keywords

Balanced truncation Differential-algebraic equations Interpolation-based approximation Matrix equations Matrix pencils Model order reduction 

Mathematics Subject Classification (2010)

15A22 15A24 34A09 65D05 65F30 93C05 

Notes

Acknowledgements

The first author acknowledges support by the collaborative project nanoCOPS: “Nanoelectronic COupled Problems Solutions” funded by the European Union in the FP7-ICT-2013-11 Program under Grant Agreement Number 619166.

The second author was supported by the Research Network KoSMos: Model reduction based simulation of coupled PDAE systems funded by the German Federal Ministry of Education and Science (BMBF), grant 05M13WAA, and by the project Model reduction for elastic multibody systems with moving interactions funded by the German Research Foundation (DFG), grant STY 58/1–2.

The authors gratefully acknowledge the careful proofreading by a reviewer and the editors which greatly enhanced the presentation of this survey.

References

  1. 1.
    Ahmad, M.I., Benner, P., Goyal, P.: Krylov subspace-based model reduction for a class of bilinear descriptor systems. J. Comput. Appl. Math. 315, 303–318 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alì, G., Banagaaya, N., Schilders, W., Tischendorf, C.: Index-aware model order reduction for linear index-2 DAEs with constant coefficients. SIAM J. Sci. Comput. 35, A1487–A1510 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alì, G., Banagaaya, N., Schilders, W., Tischendorf, C.: Index-aware model order reduction for differential-algebraic equations. Math. Comput. Model. Dyn. Syst. 20 (4), 345–373 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAAJ 46 (7), 1803–1813 (2008)CrossRefGoogle Scholar
  5. 5.
    Amsallem, D., Farhat, C.: An online method for interpolating linear reduced-order models. SIAM J. Sci. Comput. 33 (5), 2169–2198 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Amsallem, D., Cortial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Eng. 80 (9), 1241–1258 (2009)zbMATHCrossRefGoogle Scholar
  7. 7.
    Anderson, B., Vongpanitlerd, S.: Network Analysis and Synthesis. Prentice Hall, Englewood Cliffs, NJ (1973)Google Scholar
  8. 8.
    Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia, PA (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Bai, Z., Su, Y.: Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method. SIAM J. Sci. Comput. 26, 1692–1709 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Baur, U., Benner, P.: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation. at-Automatisierungstechnik 57 (8), 411–419 (2009)Google Scholar
  11. 11.
    Baur, U., Beattie, C., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33 (5), 2489–2518 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Meth. Eng. 21 (4), 331–358 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Benner, P.: Solving large-scale control problems. IEEE Contr. Syst. Mag. 24 (1), 44–59 (2004)CrossRefGoogle Scholar
  14. 14.
    Benner, P.: Numerical linear algebra for model reduction in control and simulation. GAMM Mitteilungen 29 (2), 275–296 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Benner, P.: System-theoretic methods for model reduction of large-scale systems: simulation, control, and inverse problems. In: Troch, I., Breitenecker, F. (eds.) Proceedings of MathMod 2009 (Vienna, 11–13 February 2009), ARGESIM-Reports, vol. 35, pp. 126–145. Argesim, Wien (2009)Google Scholar
  16. 16.
    Benner, P.: Advances in balancing-related model reduction for circuit simulation. In: Roos, J., Costa, L. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14, pp. 469–482. Springer, Berlin, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Benner, P.: Partial stabilization of descriptor systems using spectral projectors. In: Van Dooren, P., Bhattacharyya, S.P., Chan, R.H., Olshevsky, V., Routray, A. (eds.) Numerical Linear Algebra in Signals, Systems and Control. Lecture Notes in Electrical Engineering, vol. 80, pp. 55–76. Springer, Netherlands (2011)CrossRefGoogle Scholar
  18. 18.
    Benner, P., Quintana-Ortí, E.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorim. 20 (1), 75–100 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Benner, P., Feng, L.: A robust algorithm for parametric model order reduction based on implicit moment matching. In: Quarteroni, A., Rozza, R. (eds.) Reduced Order Methods for Modeling and Computational Reduction, vol. 9, pp. 159–186. Springer, Berlin, Heidelberg (2014)Google Scholar
  20. 20.
    Benner, P., Goyal, P.: Multipoint interpolation of Volterra series and H 2-model reduction for a family of bilinear descriptor systems. Systems Control Lett. 96, 1–11 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Benner, P., Heiland, J.: LQG-balanced truncation low-order controller for stabilization of laminar flows. In: King, R. (ed.) Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 127, pp. 365–379. Springer International Publishing, Cham (2015)Google Scholar
  22. 22.
    Benner, P., Saak, J.: Efficient balancing based MOR for large scale second order systems. Math. Comput. Model. Dyn. Syst. 17 (2), 123–143 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen 36 (1), 32–52 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Benner, P., Sokolov, V.: Partial realization of descriptor systems. Syst. Control Lett. 55 (11), 929–938 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Benner, P., Stykel, T.: Numerical solution of projected algebraic Riccati equations. SIAM J. Numer. Anal. 52 (2), 581–600 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Benner, P., Quintana-Ortí, E., Quintana-Ortí, G.: Efficient numerical algorithms for balanced stochastic truncation. Int. J. Appl. Math. Comput. Sci. 11 (5), 1123–1150 (2001)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Benner, P., Mehrmann, V., Sorensen, D. (eds.): Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin, Heidelberg (2005)Google Scholar
  28. 28.
    Benner, P., Hinze, M., ter Maten, E.J.W. (eds.): Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74 Springer, Dodrecht (2011)Google Scholar
  29. 29.
    Benner, P., Hossain, M.S., Stykel, T.: Model reduction of periodic descriptor systems using balanced truncation. In: Benner, P., Hinze, M., ter Maten, E.J.W. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74, pp. 187–200. Springer, Dodrecht (2011)CrossRefGoogle Scholar
  30. 30.
    Benner, P., Kürschner, P., Saak, J.: Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numer. Algoritm. 62 (2), 225–251 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Benner, P., Kürschner, P., Saak, J.: An improved numerical method for balanced truncation for symmetric second-order systems. Math. Comput. Model. Dyn. Syst. 19 (6), 593–615 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Benner, P., Hossain, M.S., Stykel, T.: Low-rank iterative methods for periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systems. Numer. Algoritm. 67 (3), 669–690 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Benner, P., Kürschner, P., Saak, J.: Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Electron. Trans. Numer. Anal. 43, 142–162 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric systems. SIAM Rev. 57 (4), 483–531 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Benner, P., Saak, J., Uddin, M.M.: Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numer. Alg. Cont. Opt. 6 (1), 1–20 (2016)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Berger, T., Reis, T.: Controllability of linear differential-algebraic systems - a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, pp. 1–61. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  37. 37.
    Berger, T., Reis, T., Trenn, S.: Observability of linear differential-algebraic systems: a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations IV. Differential-Algebraic Equations Forum, pp. 161–220. Springer, Heidelberg/New York/Dordrecht/London (2017)CrossRefGoogle Scholar
  38. 38.
    Bollhöfer, M., Eppler, A.: Low-rank Cholesky factor Krylov subspace methods for generalized projected Lyapunov equations. In: Benner, P. (ed.) System Reduction for Nanoscale IC Design. Mathematics in Industry, vol. 20. Springer, Berlin, Heidelberg (to appear)Google Scholar
  39. 39.
    Brenan, K., Campbell, S., Petzold, L.: The Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland Publishing Co., New York (1989)zbMATHGoogle Scholar
  40. 40.
    Chu, E.W., Fan, H.Y., Lin, W.W.: Projected generalized discrete-time periodic Lyapunov equations and balanced realization of periodic descriptor systems. SIAM J. Matrix Anal. Appl. 29 (3), 982–1006 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences, vol. 118. Springer, Berlin, Heidelberg (1989)Google Scholar
  42. 42.
    Daniel, L., Siong, O., Chay, L., Lee, K., White, J.: A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23 (5), 678–693 (2004)CrossRefGoogle Scholar
  43. 43.
    Degroote, J., Vierendeels, J., Willcox, K.: Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis. Int. J. Numer. Methods Fluids 63, 207–230 (2010)MathSciNetzbMATHGoogle Scholar
  44. 44.
    D’Elia, M., Dedé, L., Quarteroni, A.: Reduced basis method for parameterized differential algebraic equations. Bol. Soc. Esp. Math. Apl. 46, 45–73 (2009)zbMATHGoogle Scholar
  45. 45.
    Desai, U., Pal, D.: A transformation approach to stochastic model reduction. IEEE Trans. Autom. Control AC-29 (12), 1097–1100 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60, 546–560 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Druskin, V., Knizhnerman, L., Simoncini, V.: Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. SIAM J. Numer. Anal. 49, 1875–1898 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Enns, D.: Model reduction with balanced realization: an error bound and a frequency weighted generalization. In: Proceedings of the 23rd IEEE Conference on Decision and Control (Las Vegas, 1984), pp. 127–132. IEEE, New York (1984)Google Scholar
  49. 49.
    Estévez Schwarz, D., Tischendorf, C.: Structural analysis for electric circuits and consequences for MNA. Int. J. Circ. Theor. Appl. 28, 131–162 (2000)zbMATHCrossRefGoogle Scholar
  50. 50.
    Farle, O., Hill, V., Ingelström, P., Dyczij-Edlinger, R.: Multi-parameter polynomial order reduction of linear finite element models. Math. Comput. Model. Dyn. Syst. 14, 421–434 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Ferranti, F., Antonini, G., Dhaene, T., Knockaert, L.: Passivity-preserving interpolation-based parameterized model order reduction of PEEC models based on scattered grids. Int. J. Numer. Model. 24 (5), 478–495 (2011)zbMATHCrossRefGoogle Scholar
  52. 52.
    Flagg, G.M., Beattie, C.A., Gugercin, S.: Convergence of the iterative rational krylov algorithm. Syst. Control Lett. 61 (6), 688–691 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Freitas, F., Rommes, J., Martins, N.: Gramian-based reduction method applied to large sparse power system descriptor models. IEEE Trans. Power Syst. 23 (3), 1258–1270 (2008)CrossRefGoogle Scholar
  54. 54.
    Freund, R.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123 (1–2), 395–421 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Freund, R.: Model reduction methods based on Krylov subspaces. Acta Numerica 12, 267–319 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Freund, R.: The SPRIM algorithm for structure-preserving order reduction of general RCL circuits. Model reduction for circuit simulation. In: Benner, P., Hinze, M., ter Maten, E.J.W. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74, pp. 25–52. Springer, Dodrecht (2011)CrossRefGoogle Scholar
  57. 57.
    Freund, R., Feldmann, P.: The SyMPVL algorithm and its applications in interconnect simulation. In: Proceedings of the 1997 International Conference on Simulation of Semiconductor Processes and Devices, pp. 113–116. Ney York (1997)Google Scholar
  58. 58.
    Freund, R., Jarre, F.: An extension of the positive real lemma to descriptor systems. Optim. Methods Softw. 19, 69–87 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Gantmacher, F.: Theory of Matrices. Chelsea Publishing Company, New York (1959)zbMATHGoogle Scholar
  60. 60.
    Gear, C., Leimkuhler, B., Gupta, G.: Automatic integration of Euler-Lagrange equations with constraints. J. Comput. Appl. Math. 12–13, 77–90 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Georgiou, T., Smith, M.: Optimal robustness in the gap metric. IEEE Trans. Autom. Control 35 (6), 673–686 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Geuss, M., Panzer, H., Lohmann, B.: On parametric model order reduction by matrix interpolation. In: Proceedings of the European Control Conference (Zürich, Switzerland, 17–19 July 2013), pp. 3433–3438 (2013)Google Scholar
  63. 63.
    Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L -error bounds. Int. J. Control 39 (6), 1115–1193 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore, London (1996)zbMATHGoogle Scholar
  65. 65.
    Green, M.: Balanced stochastic realizations. Linear Algebra Appl. 98, 211–247 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Green, M.: A relative error bound for balanced stochastic truncation. IEEE Trans. Autom. Control 33, 961–965 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Gugercin, S., Antoulas, A.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77 (8), 748–766 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Gugercin, S., Antoulas, A., Beattie, C.: \(\mathcal{H}_{2}\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30 (2), 609–638 (2008)Google Scholar
  69. 69.
    Gugercin, S., Stykel, T., Wyatt, S.: Model reduction of descriptor systems by interpolatory projection methods. SIAM J. Sci. Comput. 35 (5), B1010–B1033 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Harshavardhana, P., Jonckheere, E., Silverman, L.: Stochastic balancing and approximation - stability and minimality. IEEE Trans. Autom. Control 29 (8), 744–746 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Heinkenschloss, M., Sorensen, D., Sun, K.: Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput. 30 (2), 1038–1063 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Ho, C.W., Ruehli, A., Brennan, P.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. 22 (6), 504–509 (1975)CrossRefGoogle Scholar
  73. 73.
    Hossain, M.S., Benner, P.: Generalized inverses of periodic matrix pairs and model reduction for periodic control systems. In: Proceedings of the 1st International Conference on Electrical Engineering and Information and Communication Technology (ICEEICT), Dhaka, Bangladesh, pp. 1–6. IEEE Publications, Piscataway (2014)Google Scholar
  74. 74.
    Ishihara, J., Terra, M.: On the Lyapunov theorem for singular systems. IEEE Trans. Autom. Control 47 (11), 1926–1930 (2002)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Jaimoukha, I., Kasenally, E.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31 (1), 227–251 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Jbilou, K.: ADI preconditioned Krylov methods for large Lyapunov matrix equations. Linear Algebra Appl. 432 (10), 2473–2485 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Jbilou, K., Riquet, A.: Projection methods for large Lyapunov matrix equations. Linear Algebra Appl. 415 (2–3), 344–358 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Jonckheere, E., Silverman, L.: A new set of invariants for linear systems with application to reduced order compensator. IEEE Trans. Autom. Control 28 (10), 953–964 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Katayama, T., Minamino, K.: Linear quadratic regulator and spectral factorization for continuous-time descriptor system. In: Proceedings of the 31st IEEE Conference on Decision and Control (Tuscon, 1992), pp. 967–972. IEEE, New York (1992)Google Scholar
  80. 80.
    Kawamoto, A., Katayama, T.: The semi-stabilizing solution of generalized algebraic Riccati equation for descriptor systems. Automatica 38, 1651–1662 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Kawamoto, A., Takaba, K., Katayama, T.: On the generalized algebraic Riccati equation for continuous-time descriptor systems. Linear Algebra Appl. 296, 1–14 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Kerler-Back, J., Stykel, T.: Model reduction for linear and nonlinear magneto-quasistatic equations. Int. J. Numer. Methods Eng. (to appear). doi: 10.1002/nme.5507
  83. 83.
    Knizhnerman, L., Simoncini, V.: Convergence analysis of the extended Krylov subspace method for the Lyapunov equation. Numer. Math. 118 (3), 567–586 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Knockaert, L., De Zutter, D.: Laguerre-SVD reduced-order modeling. IEEE Trans. Microw. Theory Tech. 48 (9), 1469–1475 (2000)CrossRefGoogle Scholar
  85. 85.
    Kowal, P.: Null space of a sparse matrix. MATLAB Central (2006). http://www.mathworks.fr/matlabcentral/fileexchange/11120
  86. 86.
    Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich, Switzerland (2006)zbMATHCrossRefGoogle Scholar
  87. 87.
    Larin, V., Aliev, F.: Construction of square root factor for solution of the Lyapunov matrix equation. Syst. Control Lett. 20 (2), 109–112 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Laub, A., Heath, M., Paige, C., Ward, R.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Automat. Control AC-32 (2), 115–122 (1987)zbMATHCrossRefGoogle Scholar
  89. 89.
    Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24 (1), 260–280 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Li, Y., Bai, Z., Su, Y.: A two-directional Arnoldi process and its application to parametric model order reduction. J. Comput. Appl. Math. 226, 10–21 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Liebermeister, W., Baur, U., Klipp, E.: Biochemical network models simplified by balanced truncation. FEBS J. 272, 4034–4043 (2005)CrossRefGoogle Scholar
  92. 92.
    Liu, W., Sreeram, V.: Model reduction of singular systems. Internat. J. Syst. Sci. 32 (10), 1205–1215 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Mehrmann, V., Stykel, T.: Descriptor systems: a general mathematical framework for modelling, simulation and control. at-Automatisierungstechnik 54 (8), 405–415 (2006)Google Scholar
  94. 94.
    Meier, III., L., Luenberger, D.: Approximation of linear constant systems. IEEE Trans. Autom. Control AC-12 (10), 585–588 (1967)Google Scholar
  95. 95.
    Möckel, J., Reis, T., Stykel, T.: Linear-quadratic gaussian balancing for model reduction of differential-algebraic systems. Int. J. Control 84 (10), 1621–1643 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC-26 (1), 17–32 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Model Order Reduction Wiki. http://www.modelreduction.org (visited 2015-11-02)
  98. 98.
    Ober, R.: Balanced parametrization of classes of linear systems. SIAM J. Control Optim. 29 (6), 1251–1287 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Odabasioglu, A., Celik, M., Pileggi, L.: PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Circuits Syst. 17 (8), 645–654 (1998)Google Scholar
  100. 100.
    Opdenacker, P., Jonckheere, E.: A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds. IEEE Trans. Circuits Syst. I 35 (2), 184–189 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric model order reduction by matrix interpolation. at-Automatisierungtechnik 58 (8), 475–484 (2010)Google Scholar
  102. 102.
    Penzl, T.: A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21 (4), 1401–1418 (1999/2000)Google Scholar
  103. 103.
    Perev, K., Shafai, B.: Balanced realization and model reduction of singular systems. Int. J. Syst. Sci. 25 (6), 1039–1052 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Pernebo, L., Silverman, L.: Model reduction via balanced state space representation. IEEE Trans. Autom. Control AC-27, 382–387 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Phillips, J., Daniel, L., Miguel Silveira, L.: Guaranteed passive balancing transformations for model order reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22, 1027–1041 (2003)CrossRefGoogle Scholar
  106. 106.
    Phillips, J., Miguel Silveira, L.: Poor Man’s TBR: a simple model reduction scheme. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24 (1), 43–55 (2005)CrossRefGoogle Scholar
  107. 107.
    Poloni, F., Reis, T.: A structured doubling algorithm for the numerical solution of Lur’e equations. Preprint 748–2011, DFG Research Center MATHEON, Technische Universität Berlin (2011)Google Scholar
  108. 108.
    Poloni, F., Reis, T.: A deflation approach for large-scale Lur’e equations. SIAM J. Matrix Anal. Appl. 33 (4), 1339–1368 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Reis, T.: Circuit synthesis of passive descriptor systems - a modified nodal approach. Int. J. Circuit Theory Appl. 38 (1), 44–68 (2010)zbMATHCrossRefGoogle Scholar
  110. 110.
    Reis, T.: Lur’e equations and even matrix pencils. Linear Algebra Appl. 434 (1), 152–173 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Reis, T.: Mathematical modeling and analysis of nonlinear time-invariant RLC circuits. In: Benner, P., Findeisen, R., Flockerzi, D., Reichl, U., Sundmacher, K. (eds.) Large-Scale Networks in Engineering and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, pp. 125–198. Birkhäuser, Basel (2014). Chapter 2Google Scholar
  112. 112.
    Reis, T., Rendel, O.: Projection-free balanced truncation for differential-algebraic systems. In: Workshop on Model Reduction of Complex Dynamical Systems MODRED 2013, Magdeburg, 13 December 2013Google Scholar
  113. 113.
    Reis, T., Stykel, T.: Balanced truncation model reduction of second-order systems. Math. Comput. Model. Dyn. Syst. 14 (5), 391–406 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Reis, T., Stykel, T.: PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29 (9), 1354–1367 (2010)CrossRefGoogle Scholar
  115. 115.
    Reis, T., Stykel, T.: Positive real and bounded real balancing for model reduction of descriptor systems. Int. J. Control 83 (1), 74–88 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Reis, T., Stykel, T.: Lyapunov balancing for passivity-preserving model reduction of RC circuits. SIAM J. Appl. Dyn. Syst. 10 (1), 1–34 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Reis, T., Voigt, M.: Linear-quadratic infinite time horizon optimal control for differential-algebraic equations - a new algebraic criterion. In: Proceedings of the International Symposium on Mathematical Theory of Networks and Systems (MTNS 2012), Melbourne, Australia, 9–13 July 2012 (2012)Google Scholar
  118. 118.
    Riaza, R.: Differential-Algebraic Systems: Analytical Aspects and Circuit Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack (2008)zbMATHCrossRefGoogle Scholar
  119. 119.
    Roberts, J.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Control 32 (4), 677–687 (1980). Reprint of Technical Report TR-13, CUED/B-Control, Engineering Department, Cambridge University, 1971Google Scholar
  120. 120.
    Rommes, J., Martins, N.: Exploiting structure in large-scale electrical circuit and power system problems. Linear Algebra Appl. 431 (3–4), 318–333 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Rosenbrock, H.: The zeros of a system. Int. J. Control 18 (2), 297–299 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Saad, Y.: Numerical solution of large Lyapunov equations. In: Kaashoek, M., Schuppen, J.V., Ran, A. (eds.) Signal Processing, Scattering, Operator Theory, and Numerical Methods, pp. 503–511. Birkhäuser, Boston (1990)Google Scholar
  123. 123.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996)zbMATHGoogle Scholar
  124. 124.
    Sabino, J.: Solution of large-scale Lyapunov equations via the block modified Smith method. Ph.D. thesis, Rice University, Houston (2006)Google Scholar
  125. 125.
    Salimbahrami, B., Lohmann, B.: Order reduction of large scale second-order systems using Krylov subspace methods. Linear Algebra Appl. 415, 385–405 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Schöps, S.: Multiscale modeling and multirate time-integration of field/circuit coupled problems. Ph.D. thesis, Bergische Universität Wuppertal (2011)Google Scholar
  127. 127.
    Schöps, S., De Gersem, H., Weiland, T.: Winding functions in transient magnetoquasistatic field-circuit coupled simulations. COMPEL 32 (6), 2063–2083 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29 (3), 1268–1288 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Son, N.: Interpolation based parametric model order reduction. Ph.D. thesis, Universität Bremen, Germany (2012)Google Scholar
  130. 130.
    Son, N.: A real time procedure for affinely dependent parametric model order reduction using interpolation on Grassmann manifolds. Int. J. Numer. Methods Eng. 93 (8), 818–833 (2013)MathSciNetzbMATHGoogle Scholar
  131. 131.
    Son, N., Stykel, T.: Model order reduction of parameterized circuit equations based on interpolation. Adv. Comput. Math. 41 (5), 1321–1342 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Steedhar, J., Van Dooren, P., Misra, P.: Minimal order time invariant representation of periodic descriptor systems. In: Proceedings of the American Control Conference, San Diego, California, June 1999, vol. 2, pp. 1309–1313 (1999)Google Scholar
  133. 133.
    Stykel, T.: Numerical solution and perturbation theory for generalized Lyapunov equations. Linear Algebra Appl. 349, 155–185 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Stykel, T.: Gramian-based model reduction for descriptor systems. Math. Control Signals Syst. 16, 297–319 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Stykel, T.: Balanced truncation model reduction for semidiscretized Stokes equation. Linear Algebra Appl. 415, 262–289 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    Stykel, T.: A modified matrix sign function method for projected Lyapunov equations. Syst. Control Lett. 56, 695–701 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Stykel, T.: Low-rank iterative methods for projected generalized Lyapunov equations. Electron. Trans. Numer. Anal. 30, 187–202 (2008)MathSciNetzbMATHGoogle Scholar
  138. 138.
    Stykel, T.: Balancing-related model reduction of circuit equations using topological structure. In: Benner, P., Hinze, M., ter Maten, E.J.W. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74, pp. 53–80. Springer, Dodrecht (2011)CrossRefGoogle Scholar
  139. 139.
    Stykel, T., Reis, T.: The PABTEC algorithm for passivity-preserving model reduction of circuit equations. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010, Budapest, Hungary, 5–9 July 2010), paper 363. ELTE, Budapest, Hungary (2010)Google Scholar
  140. 140.
    Stykel, T., Simoncini, V.: Krylov subspace methods for projected Lyapunov equations. Appl. Numer. Math. 62, 35–50 (2012)Google Scholar
  141. 141.
    Takaba, K., Morihira, N., Katayama, T.: A generalized Lyapunov theorem for descriptor system. Syst. Control Lett. 24, 49–51 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    Tan, S., He, L.: Advanced Model Order Reduction Techniques in VLSI Design. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  143. 143.
    Tombs, M., Postlethweite, I.: Truncated balanced realization of a stable non-minimal state-space system. Int. J. Control 46 (4), 1319–1330 (1987)zbMATHCrossRefGoogle Scholar
  144. 144.
    Uddin, M., Saak, J., Kranz, B., Benner, P.: Computation of a compact state space model for an adaptive spindle head configuration with piezo actuators using balanced truncation. Prod. Eng. Res. Dev. 6 (6), 577–586 (2012)CrossRefGoogle Scholar
  145. 145.
    Unneland, K., Van Dooren, P., Egeland, O.: New schemes for positive real truncation. Model. Identif. Control 28, 53–65 (2007)CrossRefGoogle Scholar
  146. 146.
    Varga, A., Fasol, K.: A new square-root balancing-free stochastic truncation model reduction algorithm. In: Proceedings of 12th IFAC World Congress, Sydney, Australia, vol. 7, pp. 153–156 (1993)Google Scholar
  147. 147.
    Verghese, G., Lévy, B., Kailath, T.: A generalized state-space for singular systems. IEEE Trans. Autom. Control AC-26 (4), 811–831 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    Wachspress, E.: The ADI minimax problem for complex spectra. In: Kincaid, D., Hayes, L. (eds.) Iterative Methods for Large Linear Systems, pp. 251–271. Academic Press, Boston (1990)CrossRefGoogle Scholar
  149. 149.
    Wang, H.S., Chang, F.R.: The generalized state-space description of positive realness and bounded realness. In: Proceedings of the 39th IEEE Midwest Symposium on Circuits and Systems, vol. 2, pp. 893–896. IEEE, New York (1996)Google Scholar
  150. 150.
    Wang, H.S., Yung, C.F., Chang, F.R.: Bounded real lemma and H control for descriptor systems. In: IEE Proceedings on Control Theory and Applications, vol. 145, pp. 316–322. IEE, Stevenage (1998)Google Scholar
  151. 151.
    Wang, H.S., Yung, C.F., Chang, F.R.: The positive real control problem and the generalized algebraic Riccati equation for descriptor systems. J. Chin. Inst. Eng. 24 (2), 203–220 (2001)CrossRefGoogle Scholar
  152. 152.
    Willcox, K., Lassaux, G.: Model reduction of an actively controlled supersonic diffuser. In: Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 357–361. Springer, Berlin, Heidelberg (2005). Chapter 20CrossRefGoogle Scholar
  153. 153.
    Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (11), 2323–2330 (2002)CrossRefGoogle Scholar
  154. 154.
    Xin, X.: Strong solutions and maximal solutions of generalized algebraic Riccati equations. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 528–533. IEEE, Piscataway (2008)Google Scholar
  155. 155.
    Yan, B., Tan, S.D., McGaughy, B.: Second-order balanced truncation for passive-order reduction of RLCK circuits. IEEE Trans. Circuits Syst. II 55 (9), 942–946 (2008)CrossRefGoogle Scholar
  156. 156.
    Zhang, L., Lam, J., Xu, S.: On positive realness of descriptor systems. IEEE Trans. Circuits Syst. 49 (3), 401–407 (2002)MathSciNetCrossRefGoogle Scholar
  157. 157.
    Zhang, Z., Wong, N.: An efficient projector-based passivity test for descriptor systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29 (8), 1203–1214 (2010)CrossRefGoogle Scholar
  158. 158.
    Zhou, K.: Error bounds for frequency weighted balanced truncation and relative error model reduction. In: Proceedings of the IEEE Conference on Decision and Control (San Antonio, Texas, December 1993), pp. 3347–3352 (1993)Google Scholar
  159. 159.
    Zhou, K.: Frequency-weighted \(\mathcal{L}_{\infty }\) norm and optimal Hankel norm model reduction. IEEE Trans. Autom. Control 40, 1687–1699 (1995)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computational Methods in Systems and Control TheoryMax Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  2. 2.Institut für MathematikUniversität AugsburgAugsburgGermany

Personalised recommendations