Advertisement

Road Segmentation for Classification of Road Weather Conditions

  • Emilio J. Almazan
  • Yiming QianEmail author
  • James H. Elder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9913)

Abstract

Using vehicle cameras to automatically assess road weather conditions requires that the road surface first be identified and segmented from the imagery. This is a challenging problem for uncalibrated cameras such as removable dash cams or cell phone cameras, where the location of the road in the image may vary considerably from image to image. Here we show that combining a spatial prior with vanishing point and horizon estimators can generate improved road surface segmentation and consequently better road weather classification performance. The resulting system attains an accuracy of 86 % for binary classification (bare vs. snow/ice-covered) and 80 % for 3 classes (dry vs. wet vs. snow/ice-covered) on a challenging dataset.

Keywords

Linear perspective Vanishing point Horizon Road segmentation Weather conditions 

References

  1. 1.
    Alvarez, J.M., Gevers, T., Lopez, A.M.: 3D scene priors for road detection. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 57–64. IEEE (2010)Google Scholar
  2. 2.
    Álvarez, J.M., Ĺopez, A.M.: Road detection based on illuminant invariance. IEEE Trans. Intell. Transp. Syst. 12(1), 184–193 (2011)CrossRefGoogle Scholar
  3. 3.
    Álvarez, J.M., López, A.M., Baldrich, R.: Shadow resistant road segmentation from a mobile monocular system. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 9–16. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72849-8_2 CrossRefGoogle Scholar
  4. 4.
    Amthor, M., Hartmann, B., Denzler, J.: Road condition estimation based on spatio-temporal reflection models. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 3–15. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24947-6_1 CrossRefGoogle Scholar
  5. 5.
    Casselgren, J.: Road surface classification using near infrared spectroscopy. Ph.D. thesisGoogle Scholar
  6. 6.
    Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., Bradski, G.R.: Self-supervised monocular road detection in desert terrain. In: Proceedings of Robotics: Science and Systems, Philadelphia (2006)Google Scholar
  7. 7.
    De Cristóforis, P., Nitsche, M.A., Krajník, T., Mejail, M.: Real-time monocular image-based path detection. J. Real Time Image Process. 11, 1–14 (2013)Google Scholar
  8. 8.
    Jokela, M., Kutila, M., Le, L.: Road condition monitoring system based on a stereo camera. In: IEEE 5th International Conference on Intelligent Computer Communication and Processing, ICCP 2009, pp. 423–428. IEEE (2009)Google Scholar
  9. 9.
    Jonsson, P.: Remote sensor for winter road surface status detection. In: Proceedings of 2011 IEEE Sensors, pp. 1285–1288. IEEE (2011)Google Scholar
  10. 10.
    Jonsson, P., Casselgren, J., Thornberg, B.: Road surface status classification using spectral analysis of NIR camera images. IEEE Sens. J. 15(3), 1641–1656 (2015)CrossRefGoogle Scholar
  11. 11.
    Kawai, S., Takeuchi, K., Shibata, K., Horita, Y.: A method to distinguish road surface conditions for car-mounted camera images at night-time. In: 2012 12th International Conference on ITS Telecommunications (ITST), pp. 668–672. IEEE (2012)Google Scholar
  12. 12.
    Kong, H., Audibert, J.Y., Ponce, J.: Vanishing point detection for road detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 96–103. IEEE (2009)Google Scholar
  13. 13.
    Kong, H., Audibert, J.Y., Ponce, J.: General road detection from a single image. IEEE Trans. Image Process. 19(8), 2211–2220 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lim, S.H., Ryu, S.K., Yoon, Y.H.: Image recognition of road surface conditions using polarization and wavelet transform. J. Korean Soc. Civil Eng. 27(4D), 471–477 (2007)Google Scholar
  15. 15.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Omer, R., Fu, L.: An automatic image recognition system for winter road surface condition classification. In: 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1375–1379. IEEE (2010)Google Scholar
  17. 17.
    Qian, Y., Almazan, E.J., Elder, J.H.: Evaluating features and classifiers for road weather condition analysis. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE (2016)Google Scholar
  18. 18.
    Rasmussen, C.: Grouping dominant orientations for ill-structured road following. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I-470. IEEE (2004)Google Scholar
  19. 19.
    Rasmussen, C.: Texture-based vanishing point voting for road shape estimation. In: BMVC, pp. 1–10. Citeseer (2004)Google Scholar
  20. 20.
    Suttorp, T., Bucher, T.: Robust vanishing point estimation for driver assistance. In: IEEE Intelligent Transportation Systems Conference, ITSC 2006, pp. 1550–1555. IEEE (2006)Google Scholar
  21. 21.
    Tal, R., Elder, J.H.: An accurate method for line detection and Manhattan frame estimation. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7729, pp. 580–593. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37484-5_47 CrossRefGoogle Scholar
  22. 22.
    Tan, C., Hong, T., Chang, T., Shneier, M.: Color model-based real-time learning for road following. In: IEEE Intelligent Transportation Systems Conference, ITSC 2006, pp. 939–944. IEEE (2006)Google Scholar
  23. 23.
    Varma, M., Zisserman, A.: Classifying images of materials: achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002). doi: 10.1007/3-540-47977-5_17. http://www.robots.ox.ac.uk/ vgg CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Teoh, E.K., Shen, D.: Lane detection and tracking using B-snake. Image Vis. Comput. 22(4), 269–280 (2004)CrossRefGoogle Scholar
  25. 25.
    Yang, H.J., Jang, H., Kang, J.W., Jeong, D.S.: Classification algorithm for road surface condition. IJCSNS 14(1), 1 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Emilio J. Almazan
    • 1
  • Yiming Qian
    • 1
    Email author
  • James H. Elder
    • 1
  1. 1.Centre for Vision ResearchYork UniversityTorontoCanada

Personalised recommendations