Advertisement

Towards Category Based Large-Scale Image Retrieval Using Transductive Support Vector Machines

  • Hakan CevikalpEmail author
  • Merve Elmas
  • Savas Ozkan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9913)

Abstract

In this study, we use transductive learning and binary hierarchical trees to create compact binary hashing codes for large-scale image retrieval applications. We create multiple hierarchical trees based on the separability of the visual object classes by random selection, and the transductive support vector machine (TSVM) classifier is used to separate both the labeled and unlabeled data samples at each node of the binary hierarchical trees (BHTs). Then the separating hyperplanes returned by TSVM are used to create binary codes. We propose a novel TSVM method that is more robust to the noisy labels by interchanging the classical Hinge loss with the robust Ramp loss. Stochastic gradient based solver is used to learn TSVM classifier to ensure that the method scales well with large-scale data sets. The proposed method improves the Euclidean distance metric and achieves comparable results to the state-of-art on CIFAR10 and MNIST data sets and significantly outperforms the state-of-art hashing methods on NUS-WIDE dataset.

Keywords

Image retrieval Transductive support vector machines Semi-supervised learning Ramp loss 

Notes

Acknowledgment

This work has been supported by the Scientific and Technological Research Council of Turkey (TUBİTAK) under Grant number TUBITAK-113E118.

References

  1. 1.
    Cevikalp, H., Triggs, B., Polikar, R.: Nearest hyperdisk methods for high-dimensional classification. In: ICML (2008)Google Scholar
  2. 2.
    Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: Proceedings of 10th International Workshop on Artifical Intelligence and Statistics (2005)Google Scholar
  3. 3.
    Collobert, R., Sinz, F., Weston, J., Bottou, L.: Large scale transductive SVMs. J. Mach. Learn. Res. 7, 1687–1712 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ertekin, S., Bottou, L., Giles, C.L.: Nonconvex online support vector machines. IEEE Trans. Pattern Anal. Mach. Intell. 33, 368–381 (2011)CrossRefGoogle Scholar
  5. 5.
    Fergus, R., Bernal, H., Weiss, Y., Torralba, A.: Semantic label sharing for learning with many categories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 762–775. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15549-9_55 CrossRefGoogle Scholar
  6. 6.
    Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: International Conference on Very Large Databases (1999)Google Scholar
  7. 7.
    Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. PAMI 35, 2916–2929 (2013)CrossRefGoogle Scholar
  8. 8.
    Gong, Y., Jia, Y., Leung, T., Toshev, A., Ioffe, S.: Deep convolutional ranking for multilabel image annotation. arXiv:1312.4894 (2013)
  9. 9.
    He, X., Cai, D., Han, J.: Learning a maximum margin subspace for image retrieval. IEEE Trans. Knowl. Data Eng. 20, 189–201 (2008)CrossRefGoogle Scholar
  10. 10.
    Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.E.: Spherical hashing. In: CVPR (2012)Google Scholar
  11. 11.
    Hoi, S.C.H., Jin, R., Zhu, J., Lyu, M.R.: Semi-supervised svm batch mode active learning for image retrieval. In: CVPR (2008)Google Scholar
  12. 12.
    Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. PAMI 33, 117–128 (2010)CrossRefGoogle Scholar
  13. 13.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
  14. 14.
    Joachims, T.: Transductive inference for text classification using support vector machines. In: International Conference on Machine Learning (1999)Google Scholar
  15. 15.
    Joly, A., Buisson, O.: Random maximum margin hashing. In: CVPR (2011)Google Scholar
  16. 16.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)Google Scholar
  17. 17.
    Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: NIPS (2009)Google Scholar
  18. 18.
    Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: ICCV (2009)Google Scholar
  19. 19.
    Lai, H., Pan, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. In: CVPR (2015)Google Scholar
  20. 20.
    Lin, K., Yang, H.F., Hsiao, J.H., Chen, C.S.: Deep learning of binary hash codes for fast image retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2015)Google Scholar
  21. 21.
    Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In: CVPR (2012)Google Scholar
  22. 22.
    Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: ICML (2011)Google Scholar
  23. 23.
    Mu, Y., Shen, J., Yan, S.: Weakly-supervised hashing in kernel space. In: CVPR (2010)Google Scholar
  24. 24.
    Norouzi, M., Fleet, D.J.: Minimal loss hashing for compact binary codes. In: ICML (2011)Google Scholar
  25. 25.
    Rahimi, A., Recht, B.: Clustering with normalized cuts is clustering with a hyperplane. In: Statistical Learning in Computer Vision (2004)Google Scholar
  26. 26.
    Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: ICCV (2009)Google Scholar
  27. 27.
    Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reason. 50(12), 969–978 (2009)CrossRefGoogle Scholar
  28. 28.
    Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 34, 1704–1716 (2013)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. PAMI 22, 888–905 (2000)CrossRefGoogle Scholar
  30. 30.
    Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image retrieval. In: CVPR (2010)Google Scholar
  31. 31.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2008)Google Scholar
  32. 32.
    Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. In: Proceedings of the 28 AAAI Conference on Artificial Intelligence (2014)Google Scholar
  33. 33.
    Yullie, A.L., Rangarajan, A.: The concave-convex procedure (cccp). In: Neural Information Processing Systems (2002)Google Scholar
  34. 34.
    Zhang, L., Wang, L., Lin, W.: Semi-supervised biased maximum margin analysis for interactive image retrieval. IEEE Trans. Image Process. 21, 2294–2308 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, R., Lin, L., Zhang, R., Zuo, W., Zhang, L.: Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification. IEEE Trans. Image Process. 24, 4766–4779 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang, Z., Chen, Y., Saligrama, V.: Supervised hashing with deep neural networks. arXiv:1511.04524 (2015)
  37. 37.
    Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for multi-label image retrieval. In: CVPR (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Electrical and Electronics EngineeringEskisehir Osmangazi UniversityEskişehirTurkey
  2. 2.TUBITAK UZAYAnkaraTurkey

Personalised recommendations