Advertisement

Measuring Process Dynamics and Nuclear Migration for Clones of Neural Progenitor Cells

  • Edgar Cardenas De La Hoz
  • Mark R. Winter
  • Maria Apostolopoulou
  • Sally Temple
  • Andrew R. CohenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9913)

Abstract

Neural stem and progenitor cells (NPCs) generate processes that extend from the cell body in a dynamic manner. The NPC nucleus migrates along these processes with patterns believed to be tightly coupled to mechanisms of cell cycle regulation and cell fate determination. Here, we describe a new segmentation and tracking approach that allows NPC processes and nuclei to be reliably tracked across multiple rounds of cell division in phase-contrast microscopy images. Results are presented for mouse adult and embryonic NPCs from hundreds of clones, or lineage trees, containing tens of thousands of cells and millions of segmentations. New visualization approaches allow the NPC nuclear and process features to be effectively visualized for an entire clone. Significant differences in process and nuclear dynamics were found among type A and type C adult NPCs, and also between embryonic NPCs cultured from the anterior and posterior cerebral cortex.

Keywords

Neural stem cells Neural progenitor cells Stem cell processes Segmentation Tracking Lineaging Stem cell process dynamics Interkinetic nuclear migration 

Notes

Acknowledgments

Portions of this research were supported by the NIH NINDS (R01NS076709), and by the NIH NIA (R01AG041861).

References

  1. 1.
    Ayala, R., Shu, T., Tsai, L.: Trekking across the brain: the journey of neuronal migration. Cell 128(1), 29–43 (2007)CrossRefGoogle Scholar
  2. 2.
    Strzyz, P.J., Lee, H.O., Sidhaye, J., Weber, I.P., Leung, L.C., Norden, C.: Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity. Dev. Cell 32(2), 203–219 (2015)CrossRefGoogle Scholar
  3. 3.
    Kosodo, Y.: Interkinetic nuclear migration: beyond a hallmark of neurogenesis. Cell. Mol. Life Sci. 69(16), 2727–2738 (2012)CrossRefGoogle Scholar
  4. 4.
    Baye, L.M., Link, B.A.: Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J. Neurosci. 27(38), 10143–10152 (2007)CrossRefGoogle Scholar
  5. 5.
    Meyer, E.J., Ikmi, A., Gibson, C.M.: Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia. Curr. Biol. 21(6), 485–491 (2011)CrossRefGoogle Scholar
  6. 6.
    Spear, C.P., Erickson, C.A.: Interkinetic nuclear migration: a mysterious process in search of a function. Dev. Growth Differ. 54(3), 306–316 (2012)CrossRefGoogle Scholar
  7. 7.
    Winter, M., Liu, M., Monteleone, D., Melunis, J., Hershberg, U., Goderie, S., Temple, S., Cohen, X.R.: Computational image analysis reveals intrinsic multigenerational differences between anterior and posterior cerebral cortex neural progenitor cells. Stem Cell Rep. 5(4), 609–620 (2015)CrossRefGoogle Scholar
  8. 8.
    Winter, M., Wait, E., Roysam, B., Goderie, S., Kokovay, E., Temple, S., Cohen, A.R.: Vertebrate neural stem cell segmentation, tracking and lineaging with validation and editing. Nat. Protoc. 6(12), 1942–1952 (2011)CrossRefGoogle Scholar
  9. 9.
    Mankowski, W.C., Winter, M.R., Wait, E., Lodder, M., Schumacher, T., Naik, S.H., Cohen, A.R.: Segmentation of occluded hematopoietic stem cells from tracking. In: Conference Proceedings of IEEE Engineering in Medicine and Biology Society, pp. 5510–5513 (2014)Google Scholar
  10. 10.
    Mankowski, W.C., Konica, G., Winter, M.R., Chen, F., Maus, C., Merkle, R., Klingmüller, U., Höfer, T., Kan, A., Heinzel, S., Oostindie, S., Hodgkin, P., Cohen, A.R.: Multi-modal segmentation for quantifying fluorescent cell cycle indicators throughout clonal development. In: Bioimage Informatics Conference (2015)Google Scholar
  11. 11.
    Wait, E., Winter, M., Bjornsson, C., Kokovay, E., Wang, Y., Goderie, S., Temple, S., Cohen, A.R.: Visualization and correction of automated segmentation, tracking and lineaging from 5-d stem cell image sequences. BMC Bioinf. 15(1), 328 (2014)CrossRefGoogle Scholar
  12. 12.
    Cohen, A.R., Gomes, F., Roysam, B., Cayouette, M.: Computational prediction of neural progenitor cell fates. Nat. Meth. 7(3), 213–218 (2010)CrossRefGoogle Scholar
  13. 13.
    Al-Kofahi, O., Radke, R.J., Roysam, B., Banker, G.: Automated semantic analysis of changes in image sequences of neurons in culture. IEEE Trans. Biomed. Eng. 53(6), 1109–1123 (2006)CrossRefGoogle Scholar
  14. 14.
    Meijering, E.: Neuron tracing in perspective. Cytometry Part A 77A(7), 693–704 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Al-Kofahi, O., Radke, R.J., Goderie, S.K., Shen, Q., Temple, S., Roysam, B.: Automated cell lineage tracing: a high-throughput method to analyze cell proliferative behavior developed using mouse neural stem cells. Cell Cycle 5(3), 327–335 (2006)CrossRefGoogle Scholar
  16. 16.
    Li, K., Miller, E.D., Weiss, L.E., Campbell, P.G., Kanade, T.: Online tracking of migrating and proliferating cells imaged with phase-contrast microscopy. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop, p. 65 (2006)Google Scholar
  17. 17.
    Li, K., Miller, E.D., Chen, M., Kanade, T., Weiss, L.E., Campbell, P.G.: Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal. 12(008), 546–566 (2008)CrossRefGoogle Scholar
  18. 18.
    Amat, F., Lemon, W., Mossing, D.P., McDole, K., Wan, Y., Branson, K., Myers, E.W., Keller, P.J.: Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Meth. 11(9), 951–958 (2014)CrossRefGoogle Scholar
  19. 19.
    Bray, M., Carpenter, A.E.: Cellprofiler tracer: exploring and validating high-throughput, time-lapse microscopy image data. BMC Bioinf. 16(1), 1–7 (2015)CrossRefGoogle Scholar
  20. 20.
    Winter, M.R., Fang, C., Banker, G., Roysam, B., Cohen, A.R.: Axonal transport analysis using multitemporal association tracking. Int. J. Comput. Biol. Drug Des. 5(1), 35–48 (2012)CrossRefGoogle Scholar
  21. 21.
    Chenouard, N., Smal, I., de Chaumont, F., Maska, M., Sbalzarini, I.F., Gong, Y., Cardinale, J., Carthel, C., Coraluppi, S., Winter, M., Cohen, A.R., Godinez, W.J., Rohr, K., Kalaidzidis, Y., Liang, L., Duncan, J., Shen, H., Xu, Y., Magnusson, K.E., Jalden, J., Blau, H.M., Paul-Gilloteaux, P., Roudot, P., Kervrann, C., Waharte, F., Tinevez, J.Y., Shorte, S.L., Willemse, J., Celler, K., van Wezel, G.P., Dan, H.W., Tsai, Y.S., de Solorzano, C.O., Olivo-Marin, J.C., Meijering, E.: Objective comparison of particle tracking methods. Nat. Meth. 11(3), 281–289 (2014)CrossRefGoogle Scholar
  22. 22.
    Kokovay, E., Wang, Y., Kusek, G., Wurster, R., Lederman, P., Lowry, N., Shen, Q., Temple, S.: Vcam1 is essential to maintain the structure of the svz niche and acts as an environmental sensor to regulate svz lineage progression. Cell Stem Cell 11(2), 220–230 (2012)CrossRefGoogle Scholar
  23. 23.
    Cohen, A.R., Bjornsson, C., Temple, S., Banker, G., Roysam, B.: Automatic summarization of changes in biological image sequences using algorithmic information theory. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1386–1403 (2009)CrossRefGoogle Scholar
  24. 24.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, San Diego (2009)zbMATHGoogle Scholar
  25. 25.
    Bain, L.J., Engelhardt, M.: Introduction to Probability and Mathematical Statistics. Duxbury, Boston (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edgar Cardenas De La Hoz
    • 1
  • Mark R. Winter
    • 1
  • Maria Apostolopoulou
    • 2
  • Sally Temple
    • 2
  • Andrew R. Cohen
    • 1
    Email author
  1. 1.Department of Electrical and Computer EngineeringDrexel UniversityPhiladelphiaUSA
  2. 2.Neural Stem Cell InstituteRensselaerUSA

Personalised recommendations