Advertisement

Feature Augmented Deep Neural Networks for Segmentation of Cells

  • Sajith Kecheril SadanandanEmail author
  • Petter Ranefall
  • Carolina Wählby
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9913)

Abstract

In this work, we use a fully convolutional neural network for microscopy cell image segmentation. Rather than designing the network from scratch, we modify an existing network to suit our dataset. We show that improved cell segmentation can be obtained by augmenting the raw images with specialized feature maps such as eigen value of Hessian and wavelet filtered images, for training our network. We also show modality transfer learning, by training a network on phase contrast images and testing on fluorescent images. Finally we show that our network is able to segment irregularly shaped cells. We evaluate the performance of our methods on three datasets consisting of phase contrast, fluorescent and bright-field images.

Keywords

Deep neural network Feature augmentation Cell segmentation Convolutional neural network Unstained cells 

Notes

Acknowledgements

This work was supported by the Swedish research council under Grant 2012-4968 (to CW) and the Swedish strategic research program eSSENCE. Image data was kindly provided by Johan Elf at the Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University, Sweden and Theresa Vincent at the Department of Physiology and Pharmacology, Karolinska Institutet, Sweden.

References

  1. 1.
    Ishii, N., Nakahigashi, K., Baba, T., et al.: Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316(5824), 593–597 (2007)CrossRefGoogle Scholar
  2. 2.
    Lin, S.C., Yip, H., Phandthong, R., Davis, B., Talbot, P.: Evaluation of dynamic cell processes and behavior using video bioinformatics tools. In: Bhanu, B., Talbot, P. (eds.) Video Bioinformatics. CB, vol. 22, pp. 167–186. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23724-4_9 CrossRefGoogle Scholar
  3. 3.
    Sadanandan, S.K., Baltekin, Ö., Magnusson, K.E.G., et al.: Segmentation and track-analysis in time-lapse imaging of bacteria. IEEE J. Sel. Topics Signal Process. 10(1), 174–184 (2016)CrossRefGoogle Scholar
  4. 4.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)Google Scholar
  5. 5.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  6. 6.
    Chen, H., Qi, X.J., Cheng, J.Z., et al.: Deep contextual networks for neuronal structure segmentation. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1167–1173 (2016)Google Scholar
  7. 7.
    Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  8. 8.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)Google Scholar
  9. 9.
    Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. arXiv:1604.06573v1 (2016)
  10. 10.
    Wang, P., Li, Z., Hou, Y., et al.: Combining convnets with hand-crafted features for action recognition based on an HMM-SVM classifier. arXiv:1602.00749v1 (2016)
  11. 11.
    Kwolek, B.: Face detection using convolutional neural networks and gabor filters. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 551–556. Springer, Heidelberg (2005). doi: 10.1007/11550822_86 CrossRefGoogle Scholar
  12. 12.
    Liu, B., Wang, M., Foroosh, H., et al.: Sparse convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 806–814, June 2015Google Scholar
  13. 13.
    Iandola, F.N., Moskewicz, M.W., Ashraf, K., et al.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and \(<\)1mb model size. arXiv:1602.07360v3 (2016)
  14. 14.
    Sadanandan, S.K.: CBA segmentation. https://bitbucket.org/sajithks/fastcba/. Accessed 21 May 2016
  15. 15.
    Woodford, C., Philips, C.: Numerical Methods with Worked Examples, Matlab edn. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, vol. 61. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  17. 17.
    Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Ind. Appl. Math. Ser. B: Numer. Anal. 2(2), 205–224 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wasilewski, F.: Pywavelets. http://www.pybytes.com/pywavelets/. Accessed 21 May 2016
  19. 19.
    Jia, Y., Shelhamer, E., Donahue, J., et al.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
  20. 20.
    Carpenter, A.E., Jones, T.R., Lamprecht, M.R., et al.: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sajith Kecheril Sadanandan
    • 1
    • 2
    Email author
  • Petter Ranefall
    • 1
    • 2
  • Carolina Wählby
    • 1
    • 2
  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden
  2. 2.SciLifeLabUppsalaSweden

Personalised recommendations