Global Scale Integral Volumes

  • Sounak BhattacharyaEmail author
  • Lixin Fan
  • Pouria Babahajiani
  • Moncef Gabbouj
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9913)


Integral volume is an important image representation technique, which is useful in many computer vision applications. Processing integral volumes for large scale 3D datasets is challenging due to high memory requirements. The difficulties lie in efficiently computing, storing, querying and updating the integral volume values. In this work, we address the above problems and present a novel solution for processing integral volumes for large scale 3D datasets efficiently. We propose an octree-based method where the worst-case complexity for querying the integral volume of arbitrary regions is \(\mathcal {O}(\log {}n)\), here n is the number of nodes in the octree. We evaluate our proposed method on multi-resolution LiDAR point cloud data. Our work can serve as a tool to fast extract features from large scale 3D datasets, which can be beneficial for computer vision applications.


Integral volume Octree Point cloud LiDAR 


  1. 1.
    Viola, P., Jones, M.J.: Robust real-time face detection. International J. Comput. Vis. 57(2), 137–154 (2004)CrossRefGoogle Scholar
  2. 2.
    Crow, F.C.: Summed-area tables for texture mapping. ACM SIGGRAPH Comput. Graph. 18(3), 207–212 (1984)CrossRefGoogle Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Understand. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Holzer, S., Rusu, R.B., Dixon, M., Gedikli, S., Navab, N.: Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2684–2689. IEEE (2012)Google Scholar
  5. 5.
    Shafait, F., Keysers, D., Breuel, T.M.: Efficient implementation of local adaptive thresholding techniques using integral images. In: Electronic Imaging 2008, International Society for Optics and Photonics, pp. 681510–681510 (2008)Google Scholar
  6. 6.
    Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance context modeling. In: IEEE 11th International Conference on Computer Vision, 2007, ICCV 2007, pp. 1–8. IEEE (2007)Google Scholar
  7. 7.
    Urschler, M., Bornik, A., Donoser, M.: Memory efficient 3d integral volumes. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 722–729 (2013)Google Scholar
  8. 8.
    Belt, H.: Storage size reduction for the integral image. Technical report, Philips Research (2007)Google Scholar
  9. 9.
    Elseberg, J., Borrmann, D., Nüchter, A.: One billion points in the cloud-an octree for efficient processing of 3d laser scans. ISPRS J. Photogrammetry Remote Sens. 76, 76–88 (2013)CrossRefGoogle Scholar
  10. 10.
    Glassner, A.S.: Multidimensional sum tables. In: Graphics Gems, pp. 376–381. Academic Press Professional, Inc. (1990)Google Scholar
  11. 11.
    Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19(2), 129–147 (1982)CrossRefGoogle Scholar
  12. 12.
    Laine, S., Karras, T.: Efficient sparse voxel octrees-analysis, extensions, and implementation. NVIDIA Corporation 2 (2010)Google Scholar
  13. 13.
    Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: a probabilistic, flexible, and compact 3d map representation for robotic systems. In: Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation, vol. 2 (2010)Google Scholar
  14. 14.
    Schwartz, J.: Bing maps tile system.
  15. 15.
    You, Y., Fan, L., Roimela, K., Mattila, V.V.: Simple octree solution for multi-resolution lidar processing and visualisation. In: 2014 IEEE International Conference on Computer and Information Technology (CIT), pp. 220–225. IEEE (2014)Google Scholar
  16. 16.
    Babahajiani, P., Fan, L., Gabbouj, M.: Object recognition in 3d point cloud of urban street scene. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014, Part I. LNCS, vol. 9008, pp. 177–190. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-16628-5_13 Google Scholar
  17. 17.
    Vo, A.V., Truong-Hong, L., Laefer, D.F., Bertolotto, M.: Octree-based region growing for point cloud segmentation. ISPRS J. Photogrammetry Remote Sens. 104, 88–100 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sounak Bhattacharya
    • 1
    Email author
  • Lixin Fan
    • 1
  • Pouria Babahajiani
    • 1
  • Moncef Gabbouj
    • 2
  1. 1.Nokia TechnologiesTampereFinland
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations