DWS at the 2016 Open Knowledge Extraction Challenge: A Hearst-Like Pattern-Based Approach to Hypernym Extraction and Class Induction

  • Stefano FaralliEmail author
  • Simone Paolo Ponzetto
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 641)


In this paper we present a system for the 2016 edition of the Open Knowledge Extraction (OKE) Challenge. The OKE challenge promotes research in automatic extraction of structured content from textual data and its representation and publication as Linked Data. The proposed system addresses the second task of the challenge, namely “Class Induction and entity typing for Vocabulary and Knowledge Base enrichment” and combines state-of-the-art lexically-based Natural Language Processing (NLP) techniques with lexical and semantic knowledge bases to first extract hypernyms from definitional sentences and second select the most suitable class of the extracted hypernyms from those available in the DOLCE foundational ontology.


Linked Open Data Hearst patterns Hypernym extraction Class induction 



This work was partially funded by the Junior-professor funding programme of the Ministry of Science, Research and the Arts of the state of Baden-Württemberg, Germany (project “Deep semantic models for high-end NLP applications”).


  1. 1.
    Agirre, E., Ansa, O., Hovy, E.H., Martínez, D.: Enriching very large ontologies using the WWW. In: ECAI Workshop on Ontology Learning, Berlin, Germany, pp. 28–33 (2000)Google Scholar
  2. 2.
    Biemann, C.: Ontology learning from text: a survey of methods. LDV Forum 20(2), 75–93 (2005)Google Scholar
  3. 3.
    Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., Racioppa, S.: Ontology-based information extraction and integration from heterogeneous data sources. Int. J. Hum.-Comput. Stud. 66(11), 759–788 (2008)CrossRefGoogle Scholar
  4. 4.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books, Cambridge (1998)zbMATHGoogle Scholar
  5. 5.
    Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.): Semantic Web Evaluation Challenges. CCIS, vol. 548. Springer, Berlin (2015)Google Scholar
  6. 6.
    Gangemi, A., Navigli, R., Velardi, P.: The OntoWordNet project: extension and axiomatization of conceptual relations in WordNet. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 820–838. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of 14th Conference on Computational Linguistics, pp. 539–545. Association for Computational Linguistics (1992)Google Scholar
  8. 8.
    Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Kozareva, Z., Hovy, E.: Learning arguments and supertypes of semantic relations using recursive patterns. In: Proceedings of ACL-2010, Uppsala, Sweden, pp. 1482–1491 (2010)Google Scholar
  10. 10.
    Lara, H.A., Ludovic, F., Amal, Z., Michel, G.: Entity typing and linking using SPARQL patterns and DBpedia. In: 2nd Open Knowledge Extraction Challenge @ 13th European Semantic Web Conference (ESWC 2016) (2016)Google Scholar
  11. 11.
    Maedche, A., Staab, S.: Ontology learning. Handbook on Ontologies, pp. 245–268. Springer, Berlin (2009)Google Scholar
  12. 12.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb deliverable D18 ontology library (final). Technical report, IST Project 2001–33052 WonderWeb: Ontology Infrastructure for the Semantic Web (2003)Google Scholar
  13. 13.
    Meusel, R., Petrovski, P., Bizer, C.: The WebDataCommons microdata, RDFa and microformat dataset series. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 277–292. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Navigli, R., Velardi, P.: Learning word-class lattices for definition and hypernym extraction. In: Proceedings of 48th Annual Meeting of the Association for Computational Linguistics, pp. 1318–1327. Association for Computational Linguistics, Uppsala (2010)Google Scholar
  15. 15.
    Nuzzolese, A.G., Gentile, A.L., Presutti, V., Gangemi, A., Garigliotti, D., Navigli, R.: Open knowledge extraction challenge. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 3–15. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25518-7_1 CrossRefGoogle Scholar
  16. 16.
    Oakes, M.P.: Using Hearst’s rules for the automatic acquisition of hyponyms for mining a pharmaceutical corpus. In: RANLP Text Mining Workshop 2005, Borovets, Bulgaria, pp. 63–67 (2005)Google Scholar
  17. 17.
    Perez, G.A., Mancho, M.D.: A survey of ontology learning methods and techniques. OntoWeb Deliverable 1.5 (2003)Google Scholar
  18. 18.
    Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology population and enrichment: state of the art. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Knowledge-Driven Multimedia Information Extraction and Ontology Evolution. LNCS, vol. 6050, pp. 134–166. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Ritter, A., Soderland, S., Etzioni, O.: What is this, anyway: automatic hypernym discovery. In: Proceedings of 2009 AAAI Spring Symposium on Learning by Reading and Learning to Read, Palo Alto, California, pp. 88–93 (2009)Google Scholar
  20. 20.
    Röder, M., Usbeck, R., Speck, R., Ngomo, A.C.N.: CETUS – a baseline approach to type extraction. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) ESWC 2015. CCIS, vol. 548, pp. 16–27. Springer, Berlin (2015)CrossRefGoogle Scholar
  21. 21.
    Seitner, J., Bizer, C., Eckert, K., Faralli, S., Meusel, R., Paulheim, H., Ponzetto, S.: A large database of hypernymy relations extracted from the web. In: Proceedings of 10th edition of Language Resources and Evaluation Conference, Portorož Slovenia (2016)Google Scholar
  22. 22.
    Snow, R., Jurafsky, D., Ng, A.: Semantic taxonomy induction from heterogeneous evidence. In: Proceedings of ACL-COLING-2006, Sydney, Australia, pp. 801–808 (2006)Google Scholar
  23. 23.
    Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hypernym discovery. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Proceedings of NIPS-2004, pp. 1297–1304. MIT Press, Cambridge (2004)Google Scholar
  24. 24.
    Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL 2003), pp. 173–180. ACL (2003)Google Scholar
  25. 25.
    Usbeck, R., Röder, M., Ngomo, A.N., Baron, C., Both, A., Brümmer, M., Ceccarelli, D., Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C., Moro, A., Navigli, R., Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R., Waitelonis, J., Wesemann, L.: GERBIL: general entity annotator benchmarking framework. In: Proceedings of 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp. 1133–1143 (2015)Google Scholar
  26. 26.
    Velardi, P., D’Antonio, F., Cucchiarelli, A.: Open domain knowledge extraction: inference on a web scale. In: Proceedings of 3rd International Conference on Web Intelligence, Mining and Semantics, WIMS 2013, pp. 35:1–35:8. ACM, New York (2013)Google Scholar
  27. 27.
    Velardi, P., Faralli, S., Navigli, R.: Ontolearn reloaded: a graph-based algorithm for taxonomy induction. Comput. Linguist. 39(3), 665–707 (2013)CrossRefGoogle Scholar
  28. 28.
    Yang, H., Callan, J.: A metric-based framework for automatic taxonomy induction. In: Proceedings of ACL-2009, Suntec, Singapore, pp. 271–279 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Research Group Data and Web ScienceUniversity of MannheimMannheimGermany

Personalised recommendations