Advertisement

Timing Properties and Correctness for Structured Parallel Programs on x86-64 Multicores

  • Kevin Hammond
  • Christopher Brown
  • Susmit Sarkar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9964)

Abstract

This paper determines correctness and timing properties for structured parallel programs on x86-64 multicores. Multicore architectures are increasingly common, but real architectures have unpredictable timing properties, and commonly used relaxed-memory concurrency models mean that even functional correctness is not obvious. This paper takes a rigorous approach to correctness and timing properties, examining common locking protocols from first principles, and extending this through queues to structured parallel constructs. We prove functional correctness and derive simple timing models, extending these for the first time from low-level machine operations to high-level parallel patterns. Our derived high-level timing models for structured parallel programs allow us to accurately predict upper bounds on program execution times on x86-64 multicores.

Keywords

Multicore Relaxed-memory concurrency Functional correctness Algorithmic skeletons Operational semantics Timing models 

Notes

Acknowledgements

This work has been partially supported by the EU Horizon 2020 grant “RePhrase: Refactoring Parallel Heterogeneous Resource-Aware Applications – a Software Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), supported by COST (European Cooperation in Science and Technology), and by EPSRC grant EP/M027317/1 “C\({}^3\): Scalable & Verified Shared Memory via Consistency-directed Cache Coherence”.

References

  1. 1.
    Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, Cambridge (1991)zbMATHGoogle Scholar
  2. 2.
    González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level structured parallel programming enablers. Softw. Pract. Experience 40(12) 1135–1160 (2010)Google Scholar
  3. 3.
    Danelutto, M., Torquati, M.: A RISC building block set for structured parallel programming. In: Proceedings of the 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2013), pp. 46–50 (2013)Google Scholar
  4. 4.
    Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Comput. C-28(9), 690–691 (1979)Google Scholar
  5. 5.
    Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-TSO: a rigorous and usable programmer’s model for x86 multiprocessors. CACM 53(7), 89–97 (2010)Google Scholar
  6. 6.
    Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03359-9_27 CrossRefGoogle Scholar
  7. 7.
    Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual vol. 3A: System Programming Guide, Part 1, §8.2.2. Intel (2013)Google Scholar
  8. 8.
    Papamarcos, M.S., Patel, J.H.: A low-overhead coherence solution for multiprocessors with private cache memories. In: Proceedings of the ISCA 1984: 11th Annual International Symposium on Computer Architecture, pp. 348–354. ACM (1984)Google Scholar
  9. 9.
    Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation). The MIT Press, Cambridge (2007)Google Scholar
  10. 10.
    Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and efficient streaming on multi-core. In: Programming Multi-core and Many-core Computing Systems. Parallel and Distributed Computing (2012)Google Scholar
  11. 11.
    Owens, S.: Reasoning about the implementation of concurrency abstractions on x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14107-2_23 CrossRefGoogle Scholar
  12. 12.
    Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library correctness on the TSO memory model. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28869-2_5 CrossRefGoogle Scholar
  13. 13.
    Hamdan, M.M.: A Survey of Cost Models for Algorithmic Skeletons. Technical report, Heriot-Watt University (1999)Google Scholar
  14. 14.
    Fortune, S., Wyllie, J.: Parallelism in random access machines. In: Proceedings of the STOC 1978: 10th Annual ACM Symposium on Theory of Computing, pp. 114–118. ACM (1978)Google Scholar
  15. 15.
    Skillicorn, D.B.: A cost calculus for parallel functional programming. J. Parallel Distrib. Comput. 28, 65–83 (1995)Google Scholar
  16. 16.
    Valiant, L.G.: A bridging model for parallel computation. Commun. ACM (CACM) 33(8), 103–111 (1990)CrossRefGoogle Scholar
  17. 17.
    Lisper, B.: Towards parallel programming models for predictability. In: Proceedings of the WCET 2012: 12th International Workshop on Worst-Case Execution Time Analysis. OpenAccess Series in Informatics (OASIcs), vol. 23, pp. 48–58 (2012)Google Scholar
  18. 18.
    Blelloch, G.E., Greiner, J.: A provable time and space efficient implementation of NESL. In: Proceedings of the ICFP 1996: ACM SIGPLAN International Conference on Functional Programming, pp. 213–225 (1996)Google Scholar
  19. 19.
    Becker, P. (ed.): Programming Languages – C++. ISO/IEC (2011)Google Scholar
  20. 20.
    Williams, A.: C++ Concurrency in Action: Practical Multithreading. Manning Publications (2012)Google Scholar
  21. 21.
    Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model. In: Proceedings of the PLDI 2008: 29th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 68–78 (2008)Google Scholar
  22. 22.
    Adve, S.V., Boehm, H.J.: Memory models: a case for rethinking parallel languages and hardware. Commun. ACM (CACM) 53(8), 90–101 (2010)CrossRefGoogle Scholar
  23. 23.
    Collins, R.L., Carloni, L.P.: Flexible filters: load balancing through backpressure for stream programs. In: Proceedings of the EMSOFT 2009: ACM SIGBED International Conference on Embedded Software, pp. 205–214 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kevin Hammond
    • 1
  • Christopher Brown
    • 1
  • Susmit Sarkar
    • 1
  1. 1.School of Computer ScienceUniversity of St AndrewsScotlandUK

Personalised recommendations