Towards Analytics Aware Ontology Based Access to Static and Streaming Data

  • Evgeny Kharlamov
  • Yannis Kotidis
  • Theofilos Mailis
  • Christian Neuenstadt
  • Charalampos Nikolaou
  • Özgür Özçep
  • Christoforos Svingos
  • Dmitriy Zheleznyakov
  • Sebastian Brandt
  • Ian Horrocks
  • Yannis Ioannidis
  • Steffen Lamparter
  • Ralf Möller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9982)


Real-time analytics that requires integration and aggregation of heterogeneous and distributed streaming and static data is a typical task in many industrial scenarios such as diagnostics of turbines in Siemens. OBDA approach has a great potential to facilitate such tasks; however, it has a number of limitations in dealing with analytics that restrict its use in important industrial applications. Based on our experience with Siemens, we argue that in order to overcome those limitations OBDA should be extended and become analytics, source, and cost aware. In this work we propose such an extension. In particular, we propose an ontology, mapping, and query language for OBDA, where aggregate and other analytical functions are first class citizens. Moreover, we develop query optimisation techniques that allow to efficiently process analytical tasks over static and streaming data. We implement our approach in a system and evaluate our system with Siemens turbine data.


Analytical Task Streaming Data Conjunctive Query Data Query Continuous Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aglio, D.D., Valle, E.D., Calbimonte, J.-P., Corcho, O., Semantics, R.-Q.: A unifying query model to explain heterogeneity of RDF stream processing systems. IJSWIS 10(4), 17–44 (2015)Google Scholar
  2. 2.
    Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom, J.: STREAM: the stanford stream data manager. In: SIGMOD (2003)Google Scholar
  3. 3.
    Arasu, A., Babu, S., Widom, J., Continuous, T.C., Language, Q.: Semantic foundations and query execution. VLDBJ 15(2), 121–142 (2006)CrossRefGoogle Scholar
  4. 4.
    Artale, A., Ryzhikov, V., Kontchakov, R.: DL-Lite with attributes and datatypes. In: ECAI (2012)Google Scholar
  5. 5.
    Baader, F., Sattler, U.: Description logics with aggregates and concrete domains. IS 28(8), 979–1004 (2003)zbMATHGoogle Scholar
  6. 6.
    Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a continuous query language for RDF data streams. Int. J. Seman. Comput. 4(1), 3–25 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs. In: ISWC (2004)Google Scholar
  8. 8.
    Calbimonte, J.-P., Corcho, Ó., Gray, A.J.G.: Enabling ontology-based access to streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17746-0_7 CrossRefGoogle Scholar
  9. 9.
    Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: the DL-Lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03754-2_7 CrossRefGoogle Scholar
  10. 10.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-based data access. Seman. Web 2(1), 43–53 (2011)Google Scholar
  11. 11.
    Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over ontologies. In: ONISW, October 2008Google Scholar
  12. 12.
    Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite knowledge bases. In: ISWC (2010)Google Scholar
  13. 13.
    Calvanese, D., Liuzzo, P., Mosca, A., Remesal, J., Rezk, M., Rull, G.: Integration, ontology-based data in EPNet: production and distribution of food during the Roman empire. Eng. Appl. AI 51, 212–229 (2016)CrossRefGoogle Scholar
  14. 14.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S.R., Reiss, F., Shah, M.A.: TelegraphCQ: continuous dataflow processing. In: SIGMOD (2003)Google Scholar
  15. 15.
    Civili, C., Console, M., De Giacomo, G., Lembo, D., Lenzerini, M., Lepore, L., Mancini, R., Poggi, A., Rosati, R., Ruzzi, M., Santarelli, V., Savo, D.F.: MASTRO STUDIO: managing ontology-based data access applications. In: PVLDB, vol. 6, no. 12 (2013)Google Scholar
  16. 16.
    Abadi, D., Carney, D. et al.: Aurora: a data stream management system. In: SIGMOD (2003)Google Scholar
  17. 17.
    Fischer, L., Scharrenbach, T., Bernstein, A.: Scalable linked data stream processing via network-aware workload scheduling. In: SSWKBS@ISWC (2013)Google Scholar
  18. 18.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H., Cube, D.: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)CrossRefGoogle Scholar
  19. 19.
    Kharlamov, E., Brandt, S., Jimenez-Ruiz, E., Kotidis, Y., Lamparter, S., Mailis, T., Neuenstadt, C., Özçep, Ö., Pinkel, C., Svingos, C., Zheleznyakov, D., Horrocks, I., Ioannidis, Y., Möller, R.: Ontology-based integration of streaming and static relational data with optique. In: SIGMOD (2016)Google Scholar
  20. 20.
    Kharlamov, E., Hovland, D., Jiménez-Ruiz, E., Pinkel, D.L.C., Rezk, M., Skjæveland, M.G., Thorstensen, E., Xiao, G., Zheleznyakov, D., Bjørge, E., Horrocks, I.: Enabling ontology based access at an oil and gas company statoil. In: ISWC (2015)Google Scholar
  21. 21.
    Kharlamov, E., et al.: How semantic technologies can enhance data access at siemens energy. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 601–619. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11964-9_38 Google Scholar
  22. 22.
    Kharlamov, E., Brandt, S., Giese, M., Jiménez-Ruiz, E., Kotidis, Y., Lamparter, S., Mailis, T., Neuenstadt, C., Özçep, Ö.L., Pinkel, C., Soylu, A., Svingos, C., Zheleznyakov, D., Horrocks, I., Ioannidis, Y.E., Möller, R., Waaler, A.: Enabling semantic access to static, streaming distributed data with optique: demo. In: DEBS (2016)Google Scholar
  23. 23.
    Kharlamov, E., Brandt, S., Giese, M., Jiménez-Ruiz, E., Lamparter, S., Neuenstadt, C., Özçep, Ö.L., Pinkel, C., Soylu, A., Zheleznyakov, D., Roshchin, M., Watson, S., Horrocks, I.: Semantic access to siemens streaming data: the optique way. In: ISWC (P&D) (2015)Google Scholar
  24. 24.
    Kharlamov, E., Jiménez-Ruiz, E., Pinkel, C., Rezk, M., Skjæveland, M.G., Soylu, A., Xiao, G., Zheleznyakov, D., Giese, M., Horrocks, I., Waaler, A.: Optique: ontology-based data access platform. In: ISWC (P&D) (2015)Google Scholar
  25. 25.
    Kharlamov, E., Jiménez-Ruiz, E., Zheleznyakov, D., Bilidas, D., Giese, M., Haase, P., Horrocks, I., Kllapi, H., Koubarakis, M., Özçep, Ö.L., Rodriguez-Muro, M., Rosati, R., Schmidt, M., Schlatte, R., Soylu, A., Waaler, A.: Optique: towards OBDA systems for industry. In: ESWC (Selected Papers) (2013)Google Scholar
  26. 26.
    Kharlamov, E., Kotidis, Y., Mailis, T., Neuenstadt, C., Nicolaou, C., Özçep, Ö., Svingos, C., Zheleznyakov, D., Brandt, S., Horrocks, I., Ioannidis, Y., Lamparter, S., Möller. R.: Towards analytics aware ontology based access to static and streaming data (extended version). In: CoRR (2016)Google Scholar
  27. 27.
    Kharlamov, E., Zheleznyakov, D., Calvanese, D.: Capturing model-based ontology evolution at the instance level: the case of DL-Lite. J. Comput. Syst. Sci. 79(6), 835–872 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kharlamov, E. et al.: Optique 1.0: semantic access to big data: the case of norwegian petroleum directorate factpages. In: ISWC (P&D) (2013)Google Scholar
  29. 29.
    Kllapi, H., Sakkos, P., Delis, A., Gunopulos, D., Ioannidis, Y.: Elastic processing of analytical query workloads on IaaS clouds. arXiv (2015)Google Scholar
  30. 30.
    Kostylev, E.V., Reutter, J.L.: Complexity of answering counting aggregate queries over DL-Lite. J. Web Seman. 33, 94–111 (2015)CrossRefGoogle Scholar
  31. 31.
    Kotidis, Y., Roussopoulos, N., DynaMat: a dynamic view management system for data warehouses. In: SIGMOD (1999)Google Scholar
  32. 32.
    Lutz, C., Seylan, I., Wolter, F.: Mixing open, closed world assumption in ontology- based data accessGoogle Scholar
  33. 33.
    Munir, K., Odeh, M., McClatchey, R.: Ontology-driven relational query formulation using the semantic and assertional capabilities of OWL-DL. KBS 35, 144–159 (2012)Google Scholar
  34. 34.
    Neuenstadt, C., Möller, R., Özçep, Ö.L.: OBDA for temporal querying and streams with STARQL. In: HiDeSt (2015)Google Scholar
  35. 35.
    Özçep, Ö.L., Möller, R., Neuenstadt, C.: A stream-temporal query language for ontology based data access. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI), vol. 8736, pp. 183–194. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11206-0_18 Google Scholar
  36. 36.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25073-6_24 CrossRefGoogle Scholar
  37. 37.
    Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Engines, linked stream data processing: facts and figures. In: ISWC (2012)Google Scholar
  38. 38.
    Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using Morph. In: WWW (2014)Google Scholar
  39. 39.
    Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Access, ontology-based data: ontop of databases. In: ISWC (2013)Google Scholar
  40. 40.
    Rodrıguez-Muro, M., Calvanese, D.: High performance query answering over DL-lite ontologies. In: KR (2012)Google Scholar
  41. 41.
    Sequeda, J., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data. JWS 22, 19–39 (2013)CrossRefGoogle Scholar
  42. 42.
    Tsangaris, M.M., Kakaletris, G., Kllapi, H., Papanikos, G., Pentaris, F., Polydoras, P., Sitaridi, E., Stoumpos, V., Ioannidis, Y.E.: Dataflow processing and optimization on grid and cloud infrastructures. IEEE Data Eng. Bull. 32(1), 67–74 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Evgeny Kharlamov
    • 1
  • Yannis Kotidis
    • 2
  • Theofilos Mailis
    • 3
  • Christian Neuenstadt
    • 4
  • Charalampos Nikolaou
    • 1
  • Özgür Özçep
    • 4
  • Christoforos Svingos
    • 3
  • Dmitriy Zheleznyakov
    • 1
  • Sebastian Brandt
    • 5
  • Ian Horrocks
    • 1
  • Yannis Ioannidis
    • 3
  • Steffen Lamparter
    • 5
  • Ralf Möller
    • 4
  1. 1.University of OxfordOxfordUK
  2. 2.Athens University of Economics and BusinessAthensGreece
  3. 3.University of AthensAthensGreece
  4. 4.University of LübeckLübeckGermany
  5. 5.Siemens Corporate TechnologyMunichGermany

Personalised recommendations