Advertisement

Capturing Industrial Information Models with Ontologies and Constraints

  • Evgeny KharlamovEmail author
  • Bernardo Cuenca Grau
  • Ernesto Jiménez-Ruiz
  • Steffen Lamparter
  • Gulnar Mehdi
  • Martin Ringsquandl
  • Yavor Nenov
  • Stephan Grimm
  • Mikhail Roshchin
  • Ian Horrocks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9982)

Abstract

This paper describes the outcomes of an ongoing collaboration between Siemens and the University of Oxford, with the goal of facilitating the design of ontologies and their deployment in applications. Ontologies are often used in industry to capture the conceptual information models underpinning applications. We start by describing the role that such models play in two use cases in the manufacturing and energy production sectors. Then, we discuss the formalisation of information models using ontologies, and the relevant reasoning services. Finally, we present SOMM—a tool that supports engineers with little background on semantic technologies in the creation of ontology-based models and in populating them with data. SOMM implements a fragment of OWL 2 RL extended with a form of integrity constraints for data validation, and it comes with support for schema and data reasoning, as well as for model integration. Our preliminary evaluation demonstrates the adequacy of SOMM’s functionality and performance.

Keywords

Information Model Integrity Constraint Manufacturing Execution System Query Answering Semantic Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abele, L., Legat, C., Grimm, S., Muller, A.W.: Ontology-based of plant models. In: INDIN (2013)Google Scholar
  2. 2.
    Arancón, J., Polo, L., Berrueta, D., Lesaffre, F., Abajo, N., Campos, A.M.: Ontology- based knowledge management in the steel industry. In: The Semantic Web: Real-World Applications from Industry (2007)Google Scholar
  3. 3.
    Bishop, B., Ficsher, F.: IRIS - integrated rule inference system. In: Workshop on Advancing Reasoning on the Web (2008)Google Scholar
  4. 4.
    Calvanese, D., et al.: Optique: OBDA solution for big data. In: ESWC (Satellite Events), Revised Selected Papers (2013)Google Scholar
  5. 5.
    Classification and Product Description. http://www.eclass.eu/
  6. 6.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity, expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  7. 7.
    Day-Richter, J., Harris, M.A., Haendel, M., Lewis, S.: OBO-Edit - an ontology editor for biologists. Bioinformatics 23(16), 2198–2200 (2007)CrossRefGoogle Scholar
  8. 8.
    Erdmann, M., Waterfeld, W.: Overview of the NeOn toolkit. In: Ontology Engineering in a Networked World (2012)Google Scholar
  9. 9.
    Forschungsunion. Fokus: Das Zukunftsprojekt Industrie 4.0, Handlungsempfehlungen zur Umsetzung. In: Bericht der Promotorengruppe KOMMUNIKATION (2012)Google Scholar
  10. 10.
    Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2 reasoner. J. Autom. Reasoning 53(3), 245–269 (2014)Google Scholar
  11. 11.
    Gliozzo, A., Biran, O., Patwardhan, S., McKeown, K.: Semantic technologies in IBM watson. In: Teaching NLP and CL Workshop (TNLP) at ACL (2013)Google Scholar
  12. 12.
    Grangel-González, I., Halilaj, L., Coskun, G., Auer, S., Collarana, D., Hoffmeister, M.: Towards a semantic administrative shell for industry 4.0 components. In: ICSC (2016)Google Scholar
  13. 13.
    Grimm, S., Watzke, M., Hubauer, T., Cescolini, F., Embedded \({\cal EL}\) + reasoning on programmable logic controllers. In: ISWC (2012)Google Scholar
  14. 14.
    Hepp, M., de Bruijn, J.: GenTax: a generic methodology for deriving OWL and RDF-S ontologies from hierarchical classifications, thesauri, and inconsistent taxonomies. In: ESWC (2007)Google Scholar
  15. 15.
    Hubauer, T., Lamparter, S., Pirker, M.: Automata-based abduction for tractable diagnosis. In: DL (2010)Google Scholar
  16. 16.
    Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology matching. In: ISWC (2011)Google Scholar
  17. 17.
    Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale interactive ontology matching: algorithms and implementation. In: ECAI (2012)Google Scholar
  18. 18.
    Kagermann, H., Lukas, W.-D.: Industrie 4.0: Mit dem internet der Dinge auf dem Weg zur 4. industriellen Revolution. In: VDI Nachrichten (2011)Google Scholar
  19. 19.
    Kharlamov, E., et al.: Enabling semantic access to static, streaming distributed data with optique: demo. In: ACM DEBS (2016)Google Scholar
  20. 20.
    Kharlamov, E.: How semantic technologies can enhance data access at siemens energy. In: ISWC (2014)Google Scholar
  21. 21.
    Kharlamov, E., et al.: Ontology based access to exploration data at statoil. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 93–112. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25010-6_6 CrossRefGoogle Scholar
  22. 22.
    Kharlamov, E.: Ontology-based integration of streaming and static relational data with optique. In: ACM SIGMOD (2016)Google Scholar
  23. 23.
    Kharlamov, E., et al.: Optique: ontology-based data access platform. In: ISWC (P&D) (2015)Google Scholar
  24. 24.
    Kharlamov, E., et al.: Optique: towards OBDA systems for industry. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 125–140. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41242-4_11 CrossRefGoogle Scholar
  25. 25.
    Kharlamov, E., et al.: Semantic access to siemens streaming data: the optique way. In: ISWC (P&D) (2015)Google Scholar
  26. 26.
    Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 web ontology language profiles (Second Edition). W3C Recommendation (2012)Google Scholar
  27. 27.
    Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational databases. J. Web Sem. 7(2), 41–60 (2009)CrossRefGoogle Scholar
  28. 28.
    Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: ISWC (2015)Google Scholar
  29. 29.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 237–271 (2008)zbMATHGoogle Scholar
  30. 30.
    Qiu, R.G., Zhou, M.: Mighty MESs; state-of-the-art, future manufacturing execution systems. IEEE Robot. Automat. Mag. 11(1) (2004)Google Scholar
  31. 31.
    Richnow, J., Rossi, C., Wank, H.: Designation of wind power plants with the reference designation system for power plants - RDS-pp. VGB PowerTech. 94, 2 (2014)Google Scholar
  32. 32.
    Ringsquandl, M., Lamparter, S., Brandt, S., Hubauer, T., Lepratti, R.: Semantic-guided feature selection for industrial automation systems. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 225–240. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25010-6_13 CrossRefGoogle Scholar
  33. 33.
    Shearer, R., Motik, B., Horrocks, I.: HermiT: a highly-efficient OWL reasoner. In: OWLED (2008)Google Scholar
  34. 34.
    Siemens. Modeling new perspectives: digitalization - the key to increased productivity, efficiency and flexibility (White Paper). In: DER SPIEGEL, 6 2015Google Scholar
  35. 35.
    Stetter, R.: Software im maschinenbau-laestiges anhangsel oder chance marktfuehrerschaft? In: VDMA, ITQ (2011). http://www.software-kompetenz.de/en/
  36. 36.
    Stolz, A., Rodriguez-Castro, B., Radinger, A., Hepp, M.: PCS2OWL: a generic approach for deriving web ontologies from product classification systems. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 644–658. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07443-6_43 CrossRefGoogle Scholar
  37. 37.
    Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In: AAAI (2010)Google Scholar
  38. 38.
    Top Quadrant. TopBraid Composer. http://www.topquadrant.com/
  39. 39.
    Tudorache, T., Noy, N.F., Tu, S.W., Musen, M.A.: Supporting collaborative ontologydevelopment in protégé. In: ISWC (2008)Google Scholar
  40. 40.
    Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: WebProtégé: a collaborative ontology editor and knowledge acquisition tool for the web. In: Semantic Web 4.1 (2013)Google Scholar
  41. 41.
    Vyatkin, V., Engineering, S.: Software engineering in industrial automation: state-of-the-art review. IEEE Trans. Ind. Inf. 9(3), 2351–2362 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Evgeny Kharlamov
    • 1
    Email author
  • Bernardo Cuenca Grau
    • 1
  • Ernesto Jiménez-Ruiz
    • 1
  • Steffen Lamparter
    • 2
  • Gulnar Mehdi
    • 2
  • Martin Ringsquandl
    • 2
  • Yavor Nenov
    • 1
  • Stephan Grimm
    • 2
  • Mikhail Roshchin
    • 2
  • Ian Horrocks
    • 1
  1. 1.University of OxfordOxfordUK
  2. 2.Siemens AG, Corporate TechnologyMunichGermany

Personalised recommendations