Auditory-Evoked Potentials

  • Christoph N. SeubertEmail author
  • Mary Herman


The auditory system is placed at risk during a variety of surgical procedures involving access to and manipulation in the posterior cranial fossa. During the course of such operations, monitoring of the auditory system can help identify critical anatomical structures or provide an early warning to forestall potential permanent damage. To realize the benefits of monitoring, all members of the care team, including the surgeon, the anesthesiologist, and the neurophysiologist, should be knowledgeable about surgical objectives, anatomical relationships, and technical constraints of the monitoring modality as well as effects of surgical interventions and anesthesia on monitored parameters. The first section reviews important anatomical relationships as they relate to auditory function and recorded potentials. The second section discusses technical aspects of each monitoring modality. Finally, the third section briefly describes technical and physiologic problems that may cause changes in intraoperative monitoring.


Auditory brainstem-evoked potentials Ear Cochlea Electrocochleogram Auditory pathway Techniques Recording Stimulation Anesthetic considerations Physiologic considerations 

Supplementary material

Video 3.1

Radiographic and anatomic location of generators of BAEPs. The MRI images in the on-line video were provided by Reordan O. DeJesus, MD, Department of Radiology, University of Florida. The narrative was done by Erin Rathbone (MP4 111,628 kb)


  1. 1.
    *Simon MV. Neurophysiologic intraoperative monitoring of the vestibulocochlear nerve. J Clin Neurophysiol. 2011;28:566–81.Google Scholar
  2. 2.
    Jewitt DL, Willliston JS. Auditory-evoked far fields averaged from the scalp of humans. Brain. 1971;94:681–96.CrossRefGoogle Scholar
  3. 3.
    Picton TW, Hillyard SA, Krausz HI, Galambos R. Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol. 1974;36:179–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Møller AR. Neural generators for auditory brainstem evoked potentials. In: Burkard RF, Eggemont JJ, Manuel D, editors. Auditory evoked potentials: basic principles and clinical applications. Baltimore: Lippincott Williams & Wilkins; 2007. p. 336–54.Google Scholar
  5. 5.
    Strominger NL, Nelson LR, Dougherty WJ. Second order auditory pathways in the chimpanzee. J Comp Neurol. 1977;172:349–66.CrossRefPubMedGoogle Scholar
  6. 6.
    Grundy BL, Jannetta PJ, Procopio PT, Lina A, Boston JR, Doyle E. Intraoperative monitoring of brain-stem auditory evoked potentials. J Neurosurg. 1982;57:674–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Friedman WA, Kaplan BJ, Gravenstein D, Rhoton Jr AL. Intraoperative brain-stem auditory evoked potentials during posterior fossa microvascular decompression. J Neurosurg. 1985;62:552–7.CrossRefPubMedGoogle Scholar
  8. 8.
    *Legatt AD. Mechanisms of intraoperative brainstem auditory evoked potential changes. J Clin Neurophysiol. 2002;19:396–408.Google Scholar
  9. 9.
    Legatt AD, Arezzo JC, Vaughn Jr HG. The anatomic and physiologic bases of brainstem auditory evoked potentials. Neurol Clin. 1988;6:681–704.PubMedGoogle Scholar
  10. 10.
    Gersdorff MCH. Simultaneous recordings of human auditory potentials: transtympanic electrocochleagraphy (ECoG) and brainstem-evoked responses (BER). Arch Otorhinolaryngol. 1982;234(1):15–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Legatt AD. Brainstem auditory evoked potentials: methodology, interpretation, and clinical application. In: Aminoff MJ, editor. Electrodiagnosis in clinical neurology. New York: Churchill Livingstone; 2005. p. 489–523.CrossRefGoogle Scholar
  12. 12.
    *Møller AR, Jannetta PJ. Monitoring auditory functions during cranial nerve microvascular decompression operations by direct recording from the eighth nerve. J Neurosurg. 1983;59:493–9.Google Scholar
  13. 13.
    Møller AR, Jannetta PJ, Jho HD. Click-evoked response from the cochlear nucleus: a study in humans. Electroencephalogr Clin Neurophysiol. 1994;92:215–24.CrossRefPubMedGoogle Scholar
  14. 14.
    *Møller AR, Jho HD, Yokota M, Jannetta PJ. Contribution from crossed and uncrossed brainstem structures to the brainstem auditory evoked potentials (BAEP): a study in humans. Laryngoscope. 1995;105:596–605.Google Scholar
  15. 15.
    Chiappa KH, Roppper AH. Evoked potentials in clinical medicine (first of two parts). N Engl J Med. 1982;306:1205–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Duncan PG, Sanders RA, McCullough DW. Preservation of auditory-evoked brainstem responses in anaesthetized children. Can Anaesth Soc J. 1979;26:492–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Raudzens PA, Shetter AG. Intraoperative monitoring of brain-stem auditory evoked potentials. J Neurosurg. 1982;57:341–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Musiek FE, Weihing JA, Oxholm VB. Anatomy and physiology of the central auditory nervous system: a clinical perspective. In: Roeser RJ, Valente M, Hosford-Dunn H, editors. Audiology diagnosis, vol. 2. New York: Thieme Medical; 2007. p. 50–6.Google Scholar
  19. 19.
    Brunner MD, Umo-Etuk J, Sharpe RM, Thornton C. Effect of a bolus dose of midazolam on the auditory evoked response in humans. Br J Anaesth. 1999;82:633–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Deiber MP, Ibanez V, Fischer C, Perrin F, Mauguiere F. Sequential mapping favours the hypothesis of different generators for Na and Pa middle latency auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1988;71:187–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Thornton RM, Sharpe RM. Evoked responses in anaesthesia. Br J Anaesth. 1998;81:771–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Dutton RC, Smith WD, Rampil IJ, Chortkoff BS, Eger II EI. Forty-hertz midlatency auditory evoked potential activity predicts wakeful response during desflurane and propofol anesthesia in volunteers. Anesthesiology. 1999;91:1209–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Goto T, Nakata Y, Saito H, Ishiguro Y, Niimi Y, Morita S. The midlatency auditory evoked potentials predict responsiveness to verbal commands in patients emerging from anesthesia with xenon, isoflurane, and sevoflurane, but not with nitrous oxide. Anesthesiology. 2001;94:782–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Kileny P, Dobson D, Gelfand ET. Middle-latency auditory evoked responses during open-heart surgery with hypothermia. Electroencephalogr Clin Neurophysiol. 1983;55:268–76.CrossRefPubMedGoogle Scholar
  25. 25.
    Woods DL, Clayworth CC, Knight RT. Middle latency auditory evoked potentials following cortical and subcortical lesions. Electroencephalogr Clin Neurophysiol. 1985;61:51.CrossRefGoogle Scholar
  26. 26.
    Woods DL, Clayworth CC, Knight RT, Simpson GV, Naeser MA. Generators of middle- and long-latency auditory evoked potentials: implications from studies of patients with bitemporal lesions. Electroencephalogr Clin Neurophysiol. 1987;68:132–48.CrossRefPubMedGoogle Scholar
  27. 27.
    Buchwald JS, Erwin RJ, Van Lancker D, Cummings JL. Midlatency auditory evoked responses: differential abnormality of P1 in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol. 1989;74:378–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Green JB, Flagg L, Freed DM, Schwankhaus JD. The middle latency auditory evoked potential may be abnormal in dementia. Neurology. 1992;42:1034–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Versino M, Bergamaschi R, Romani A, Banfi P, Callieco R, Citterio A, et al. Middle latency auditory evoked potentials improve the detection of abnormalities along auditory pathways in multiple sclerosis patients. Electroencephalogr Clin Neurophysiol. 1992;84:296–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Green JB, Elder WW, Freed DM. The P1 component of the middle latency auditory evoked potential predicts a practice effect during clinical trials in Alzheimer’s disease. Neurology. 1995;45:962–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Çelik M, Seleker FK, Sucu H, Forta H. Middle latency auditory evoked potentials in patients with parkinsonism. Parkinsonism Relat Disord. 2000;6:95–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Arakawa K, Tomia H, Tobimatsuc S, Kirab J. Middle latency auditory-evoked potentials in myotonic dystrophy: relation to the size of the CTG trinucleotide repeat and intelligence quotient. J Neurol Sci. 2003;207:31–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim HN, Kim YH, Park IY, Kim GR, Chung IH. Variability of the surgical anatomy of the neurovascular complex of the cerebropontine angle. Ann Otol Rhinol Laryngol. 1990;99:288–96.CrossRefPubMedGoogle Scholar
  34. 34.
    Nadol Jr JB, Levine R, Ojemann RG, Martuza RL, Montgomery WW, de Sandoval PK. Preservation of hearing in surgical removal of acoustic neuromas of the internal auditory canal and cerebellar pontine angle. Laryngoscope. 1987;97:1287–94.CrossRefPubMedGoogle Scholar
  35. 35.
    Levine RA, Ronner SF, Ojemann RG. Auditory evoked potential and other neurophysiologic monitoring techniques during tumor surgery in the cerebellaopontine angle. In: Loftus CM, Traynelis VC, editors. Intraoperative monitoring techniques in neurosurgery. New York: McGraw-Hill; 1994. p. 175–91.Google Scholar
  36. 36.
    Yasargil MG. Microneurosurgery in CNS tumors, vol. 1. Stuttgart: Thieme Medical; 1996. p. 95–108.Google Scholar
  37. 37.
    Bogousslavsky J, Caplan LR. Stroke syndromes. 2nd ed. New York: Cambridge University Press; 2001. p. 146.CrossRefGoogle Scholar
  38. 38.
    Little JR, Lesser RP, Luders H, Furlan AJ. Brainstem auditory evoked potentials in posterior circulation surgery. Neurosurgery. 1983;12:496–502.CrossRefPubMedGoogle Scholar
  39. 39.
    Mannimen PH, Patterson S, Lam AM, Gelb AW, Nantau WE. Evoked potential monitoring during posterior fossa aneurysm surgery: a comparison of two modalities. Can J Anaesth. 1994;41:92–7.CrossRefGoogle Scholar
  40. 40.
    *Martin WH, Stecker MM. ASNM position statement: intraoperative monitoring of auditory evoked potentials. J Clin Monit Comput. 2008;22:75–85.Google Scholar
  41. 41.
    Bruhn J, Myles PS, Sneyd R, Struys MM. Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? Br J Anaesth. 2006;97:85–94.CrossRefPubMedGoogle Scholar
  42. 42.
    Krieg SM, Kempf L, Droese D, Rosahl SK, Meyer B, Lehmberg J. Superiority of tympanic ball electrodes over mastoid needle electrodes for intraoperative monitoring of hearing function. J Neurosurg. 2014;120:1042–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Ferraro JA. Clinical electrocochleography: overview of theories, techniques and applications. = 238. Accessed 14 July 2010.
  44. 44.
    Coats AC. The summating potential and Menière’s disease. Arch Otolaryngol. 1981;107:199–208.CrossRefPubMedGoogle Scholar
  45. 45.
    Bell SL, Smith DC, Allen R, Lutman ME. Recording the middle latency response of the auditory evoked potential as a measure of depth of anaesthesia. A technical note. Br J Anaesth. 2004;92:442–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Plourde G. Auditory evoked responses. Best Pract Res Clin Anaesthesiol. 2006;20:129–39.CrossRefPubMedGoogle Scholar
  47. 47.
    Thornton C, Heneghan CPH, James MFM, Jones JG. Effects of halothane or enflurane with controlled ventilation on auditory evoked potentials. Br J Anaesth. 1984;56:315–23.CrossRefPubMedGoogle Scholar
  48. 48.
    Nishiyama T. Comparison of the two different auditory evoked potentials index monitors in propofol-fentanyl-nitrous oxide anesthesia. J Clin Anesth. 2009;21:551–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Ying T, Thirumala P, Chang Y, Habeych M, Crammond D, Balzer J. Empirical factors associated with brainstem auditory evoked potential monitoring during microvascular decompression for hemifacial spasm and its correlation to hearing loss. Acta Neurochir. 2014;156:571–5.CrossRefPubMedGoogle Scholar
  50. 50.
    *Sloan TB. Evoked potential monitoring of the central nervous system intraoperatively. Anesthesiol Clin North America. 1997;15:593–611.Google Scholar
  51. 51.
    Legatt AD. Brainstem auditory evoked potentials (ABRs) and intraoperative ABR monitoring. Handbook Clin Neurophysiol. 2010;9:282–302.CrossRefGoogle Scholar
  52. 52.
    Chadwick GM, Asher AL, Van Der Veer CA, Pollard RJ. Adverse effects of topical papaverine on auditory nerve function. Acta Neurochir (Wien). 2008;150:901–9.CrossRefGoogle Scholar
  53. 53.
    Jo KW, Lee JA, Park K, Cho YS. A new possible mechanism of hearing loss after microvascular decompression for hemifacial spasm. Otol Neurotol. 2013;34:1247–52.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of Florida College of MedicineGainesvilleUSA
  2. 2.Department of AnesthesiologyThe Geisinger Health System, GMC AnesthesiologyDanvilleUSA

Personalised recommendations