Advertisement

Intraoperative Neurophysiological Monitoring for Intracranial Aneurysm Surgery

  • Laura B. HemmerEmail author
  • Carine Zeeni
  • Bernard R. Bendok
  • Antoun Koht
Chapter

Abstract

Intracranial aneurysm rupture presents a high risk of neurologic morbidity and mortality. To avoid potential rupture in an intact aneurysm or to facilitate management and minimize risk of a re-bleed in a ruptured aneurysm, treatment modalities, such as endovascular coiling and surgical aneurysm clipping, are performed. To help provide real-time functional assessment of neurologic function intraoperatively and thus allow identification and correction of potentially deleterious maneuvers, intraoperative neuromonitoring can be performed. There is growing literature support for use of evoked potentials for these procedures, particularly for intracranial aneurysm clipping.

Keywords

Intracranial aneurysm Intraoperative neuromonitoring Clip ligation Endovascular therapy Adenosine 

Supplementary material

Video 21.1

Expected field movement with transcranial MEP stimulation. Movement with arterial pulsation is visible and additional small increases in movement are seen with stimulation (WMV 13,122 kb)

Video 21.2

Typical ICG angiogram inspecting an aneurysm post clip placement (WMV 10,450 kb)

Video 21.3

Clip reconstruction involves opening the aneurysm dome after trapping the aneurysm; therefore, reperfusion cannot occur until the aneurysm is secured (WMV 55,003 kb)

Video 21.4

Brisk bleeding in the field from aneurismal rupture is visible followed by a clearing of the surgical field during adenosine-induced cardiac standstill (WMV 6689 kb)

Video 21.5

EKG tracing on the patient’s intraoperative monitor showing sinus rhythm followed by asystole during adenosine-induced cardiac standstill (3gp 1242 kb)

References1

  1. 1.
    Bederson JB, Connolly Jr ES, Batjer HH, Dacey RG, Dion JE, Diringer MN, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40(3):994–1025.CrossRefPubMedGoogle Scholar
  2. 2.
    Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 2002;360(9342):1267–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Wiebers DO, Whisnant JP, Huston 3rd J, Meissner I, Brown Jr RD, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–10.CrossRefPubMedGoogle Scholar
  4. 4.
    Chang HS. Simulation of the natural history of cerebral aneurysms based on data from the International Study of Unruptured Intracranial Aneurysms. J Neurosurg. 2006;104(2):188–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Rahman M, Smietana J, Hauck E, Hoh B, Hopkins N, Siddiqui A, et al. Size ratio correlates with intracranial aneurysm rupture status: a prospective study. Stroke. 2010;41(5):916–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Yoshimoto Y. A mathematical model of the natural history of intracranial aneurysms: quantification of the benefit of prophylactic treatment. J Neurosurg. 2006;104(2):195–200.CrossRefPubMedGoogle Scholar
  7. 7.
    Lall RR, Eddleman CS, Bendok BR, Batjer HH. Unruptured intracranial aneurysms and the assessment of rupture risk based on anatomical and morphological factors: sifting through the sands of data. Neurosurg Focus. 2009;26(5):E2.CrossRefPubMedGoogle Scholar
  8. 8.
    Shi C, Awad IA, Jafari N, Lin S, Du P, Hage ZA, et al. Genomics of human intracranial aneurysm wall. Stroke. 2009;40(4):1252–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Mira JM, Costa FA, Horta BL, Fabiao OM. Risk of rupture in unruptured anterior communicating artery aneurysms: meta-analysis of natural history studies. Surg Neurol. 2006;66 Suppl 3:S12–9. discussion S9.CrossRefPubMedGoogle Scholar
  10. 10.
    Scott RB, Eccles F, Molyneux AJ, Kerr RS, Rothwell PM, Carpenter K. Improved cognitive outcomes with endovascular coiling of ruptured intracranial aneurysms. Neuropsychological outcomes from the international subarachnoid aneurysm trial (ISAT). Stroke. 2010;41(8):1743–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Connolly Jr ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.CrossRefPubMedGoogle Scholar
  12. 12.
    Dankbaar JW, Slooter AJ, Rinkel GJ, Schaaf IC. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit Care. 2010;14(1):R23.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mitchell P, Kerr R, Mendelow AD, Molyneux A. Could late rebleeding overturn the superiority of cranial aneurysm coil embolization over clip ligation seen in the International Subarachnoid Aneurysm Trial? J Neurosurg. 2008;108(3):437–42.CrossRefPubMedGoogle Scholar
  14. 14.
    Ausman JI. The International Subarachnoid Aneurysm Trial II: comparison of clipping vs coiling: key questions. Are the results of the study generalizable? Should clipping be done for patients less than 40 years of age? Surg Neurol. 2008;70(1):104–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Bebawy JF, Gupta DK, Bendok BR, Hemmer LB, Zeeni C, Avram MJ, et al. Adenosine-induced flow arrest to facilitate intracranial aneurysm clip ligation: dose–response data and safety profile. Anesth Analg. 2010;110(5):1406–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Young WL, Lawton MT, Gupta DK, Hashimoto T. Anesthetic management of deep hypothermic circulatory arrest for cerebral aneurysm clipping. Anesthesiology. 2002;96(2):497–503.CrossRefPubMedGoogle Scholar
  17. 17.
    Quinones-Hinojosa A, Alam M, Lyon R, Yingling CD, Lawton MT. Transcranial motor evoked potentials during basilar artery aneurysm surgery: technique application for 30 consecutive patients. Neurosurgery. 2004;54(4):916–24. discussion: 24.CrossRefPubMedGoogle Scholar
  18. 18.
    Warner DS. Perioperative neuroprotection: are we asking the right questions? Anesth Analg. 2004;98(3):563–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Holland NR. Subcortical strokes from intracranial aneurysm surgery: implications for intraoperative neuromonitoring. J Clin Neurophysiol. 1998;15(5):439–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Horiuchi K, Suzuki K, Sasaki T, Matsumoto M, Sakuma J, Konno Y, et al. Intraoperative monitoring of blood flow insufficiency during surgery of middle cerebral artery aneurysms. J Neurosurg. 2005;103(2):275–83.CrossRefPubMedGoogle Scholar
  21. 21.
    *Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100(3):389–99.Google Scholar
  22. 22.
    Bacigaluppi S, Fontanella M, Manninen P, Ducati A, Tredici G, Gentili F. Monitoring techniques for prevention of procedure-related ischemic damage in aneurysm surgery. World Neurosurg. 2012;78(3–4):276–88.CrossRefPubMedGoogle Scholar
  23. 23.
    *Neuloh G, Schramm J. Evoked potential monitoring during surgery for intracranial aneurysms. In: Handbook of clinical neurophysiology. vol. 8. New York: Elsevier; 2008. p. 801–14.Google Scholar
  24. 24.
    Yeon JY, Seo DW, Hong SC, Kim JS. Transcranial motor evoked potential monitoring during the surgical clipping of unruptured intracranial aneurysms. J Neurol Sci. 2010;293(1–2):29–34.CrossRefPubMedGoogle Scholar
  25. 25.
    *Yue Q, Zhu W, Gu Y, Xu B, Lang L, Song J, et al. Motor evoked potential monitoring during surgery of middle cerebral artery aneurysms: a cohort study. World Neurosurg. 2014;82(6):1091–9.Google Scholar
  26. 26.
    Guo L, Gelb AW. The use of motor evoked potential monitoring during cerebral aneurysm surgery to predict pure motor deficits due to subcortical ischemia. Clin Neurophysiol. 2011;122(4):648–55.CrossRefPubMedGoogle Scholar
  27. 27.
    Holdefer RN, MacDonald DB, Skinner SA. Somatosensory and motor evoked potentials as biomarkers for post-operative neurological status. Clin Neurophysiol. 2015;126(5):857–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Sloan TB, Janik D, Jameson L. Multimodality monitoring of the central nervous system using motor-evoked potentials. Curr Opin Anaesthesiol. 2008;21(5):560–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Szelenyi A, Langer D, Kothbauer K, De Camargo AB, Flamm ES, Deletis V. Monitoring of muscle motor evoked potentials during cerebral aneurysm surgery: intraoperative changes and postoperative outcome. J Neurosurg. 2006;105(5):675–81.CrossRefPubMedGoogle Scholar
  30. 30.
    Hemmer LB, Zeeni C, Bebawy JF, Bendok BR, Cotton MA, Shah NB, et al. The incidence of unacceptable movement with motor evoked potentials during craniotomy for aneurysm clipping. World Neurosurg. 2014;81(1):99–104.CrossRefPubMedGoogle Scholar
  31. 31.
    Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61(1):45–58.CrossRefPubMedGoogle Scholar
  32. 32.
    Egan TD, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology. 1996;84(4):821–33.CrossRefPubMedGoogle Scholar
  33. 33.
    Rampil IJ, Laster M, Dwyer RC, Taheri S, Eger II EI. No EEG evidence of acute tolerance to desflurane in swine. Anesthesiology. 1991;74(5):889–92.CrossRefPubMedGoogle Scholar
  34. 34.
    Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology. 1985;62(3):234–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Short TG. Using response surfaces to expand the utility of MAC. Anesth Analg. 2010;111(2):249–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL. Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg. 1992;75(4):584–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Reinacher PC, Priebe HJ, Blumrich W, Zentner J, Scheufler KM. The effects of stimulation pattern and sevoflurane concentration on intraoperative motor-evoked potentials. Anesth Analg. 2006;102(3):888–95.CrossRefPubMedGoogle Scholar
  38. 38.
    Drummond JC. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997;86(6):1431–3.CrossRefPubMedGoogle Scholar
  39. 39.
    Peterson DO, Drummond JC, Todd MM. Effects of halothane, enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials in humans. Anesthesiology. 1986;65(1):35–40.CrossRefPubMedGoogle Scholar
  40. 40.
    Liu EH, Wong HK, Chia CP, Lim HJ, Chen ZY, Lee TL. Effects of isoflurane and propofol on cortical somatosensory evoked potentials during comparable depth of anaesthesia as guided by bispectral index. Br J Anaesth. 2005;94(2):193–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Anastasian ZH, Ramnath B, Komotar RJ, Bruce JN, Sisti MB, Gallo EJ, et al. Evoked potential monitoring identifies possible neurological injury during positioning for craniotomy. Anesth Analg. 2009;109(3):817–21.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Benzon HT, Toleikis JR, Meagher LL, Shapiro BA, Ts’ao CH, Avram MJ. Changes in venous blood lactate, venous blood gases, and somatosensory evoked potentials after tourniquet application. Anesthesiology. 1988;69(5):67–82.CrossRefGoogle Scholar
  43. 43.
    Andrews RJ, Bringas JR. A review of brain retraction and recommendations for minimizing intraoperative brain injury. Neurosurgery. 1993;33(6):1052–63. discussion 63–4.PubMedGoogle Scholar
  44. 44.
    Szelenyi A, Kothbauer K, Bueno de Camargo A, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57(ONS Suppl 4):331–8.PubMedGoogle Scholar
  45. 45.
    Neuloh G, Schramm J. What the surgeon wins, and what the surgeon loses from intraoperative neurophysiologic monitoring? Acta Neurochir. 2005;147(8):811–3.CrossRefPubMedGoogle Scholar
  46. 46.
    Hoffman WE, Charbel FT, Edelman G, Ausman JI. Thiopental and desflurane treatment for brain protection. Neurosurgery. 1998;43(5):1050–3.CrossRefPubMedGoogle Scholar
  47. 47.
    Newman MF, Croughwell ND, White WD, Sanderson I, Spillane W, Reves JG. Pharmacologic electroencephalographic suppression during cardiopulmonary bypass: a comparison of thiopental and isoflurane. Anesth Analg. 1998;86(2):246–51.PubMedGoogle Scholar
  48. 48.
    Newman MF, Murkin JM, Roach G, Croughwell ND, White WD, Clements FM, et al. Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass. CNS Subgroup of McSPI. Anesth Analg. 1995;81(3):452–7.PubMedGoogle Scholar
  49. 49.
    Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99(3):716–37.CrossRefPubMedGoogle Scholar
  50. 50.
    Raabe A, Nakaji P, Beck J, Kim LJ, Hsu FP, Kamerman JD, et al. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg. 2005;103(6):982–9.CrossRefPubMedGoogle Scholar
  51. 51.
    de Oliveira JG, Beck J, Seifert V, Teixeira MJ, Raabe A. Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near-infrared indocyanine green videoangiography. Neurosurgery. 2008;62(6 Suppl 3):1300–10.PubMedGoogle Scholar
  52. 52.
    Parkinson RJ, Bendok BR, Getch CC, Yashar P, Shaibani A, Ankenbrandt W, et al. Retrograde suction decompression of giant paraclinoid aneurysms using a No. 7 French balloon-containing guide catheter. Technical note. J Neurosurg. 2006;105(3):479–81.CrossRefPubMedGoogle Scholar
  53. 53.
    Bloom MJ, Kofke WA, Nemoto E, Whitehurst S. Monitoring for cerebrovascular surgery. Int Anesthesiol Clin. 1996;34(3):137–47.CrossRefPubMedGoogle Scholar
  54. 54.
    Jameson LC, Janik DJ, Sloan TB. Electrophysiologic monitoring in neurosurgery. Anesthesiol Clin. 2007;25(3):605–30. x.CrossRefPubMedGoogle Scholar
  55. 55.
    Warner DS, Takaoka S, Wu B, Ludwig PS, Pearlstein RD, Brinkhous AD, et al. Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia. Anesthesiology. 1996;84(6):1475–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Nakashima K, Todd MM, Warner DS. The relation between cerebral metabolic rate and ischemic depolarization. A comparison of the effects of hypothermia, pentobarbital, and isoflurane. Anesthesiology. 1995;82(5):1199–208.CrossRefPubMedGoogle Scholar
  57. 57.
    Todd MM, Warner DS. A comfortable hypothesis reevaluated. Cerebral metabolic depression and brain protection during ischemia. Anesthesiology. 1992;76(2):161–4.CrossRefPubMedGoogle Scholar
  58. 58.
    Todd MM, Hindman BJ, Clarke WR, Torner JC. Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med. 2005;352(2):135–45.CrossRefPubMedGoogle Scholar
  59. 59.
    Wang M, Joshi S. Electrocerebral silence after intracarotid propofol injection is a function of transit time. Anesth Analg. 2007;104(6):1498–503.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Laura B. Hemmer
    • 1
    Email author
  • Carine Zeeni
    • 2
  • Bernard R. Bendok
    • 3
  • Antoun Koht
    • 4
  1. 1.Departments of Anesthesiology and Neurological SurgeryNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Department of AnesthesiologyAmerican University of Beirut Medical CenterBeirutLebanon
  3. 3.Department of Neurologic Surgery in Arizona, Mayo Clinic Arizona, Mayo Clinic HospitalMayo Clinic College of MedicinePhoenixUSA
  4. 4.Departments of Anesthesiology, Neurological Surgery and NeurologyNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations