Advertisement

Anesthesia for Awake Neurosurgery

  • Antoun KohtEmail author
  • Georg Neuloh
  • Matthew C. Tate
Chapter

Abstract

Neurosurgical operations performed in awake patients are increasingly being used. Procedures employing this technique include resection of tumors and epileptic foci in and around the eloquent areas of the brain, localization of the proper nucleus for deep brain stimulation, testing for spinal cord stimulator placement and other pain procedures, carotid endarterectomy, and surgery on the spine and peripheral nervous system. Proponents cite easy neurological evaluation, short recovery, fewer complications, and early discharge from the hospital. In this chapter, we discuss the anesthetic management as well as monitoring the neurologic function during these procedures.

Keywords

Anesthesia Monitoring Awake neurosurgery Awake craniotomy Craniotomy Tumor resection Indications Patient selection Sedation Analgesia Cortical mapping Subcortical mapping 

Supplementary material

Video 18.1

Blocking the supra trochlear nerve is done by inserting the needle perpendicular to the supratrochlear notch utilizing 25-gauge short needle to reach to the notch. After negative aspiration, 1 mL of local anesthetics is injected (MOV 2599 kb)

Video 18.2

Blocking the supraorbital nerve is done by inserting the needle perpendicular to the supraorbital notch utilizing 25-gauge short needle to reach to the notch. After negative aspiration 1 mL of local anesthetics is injected (MOV 1372 kb)

Video 18.3

The 25-gauge 38-mm-long needle is inserted just above the zygomatic arch two-thirds between the edge of orbit and the tragus. The needle is inserted to touch the temporal skull bone then to slide toward the orbit. Three milliliter of local anesthetics is injected closer to the orbit, 1 mL injected 1 cm lateral to the first inject followed by one more milliliter injected 1 cm more distal. (The 5 mL is injected only on the side of surgery; other side will be injected with 3-mL only) (MOV 5112 kb)

Video 18.4

This is a home-modified block [32]. Three milliliters of local anesthetics is injected 1 cm above the tragus just behind the superfacial temporal artery (MOV 2938 kb)

Video 18.5

The lesser occipital nerve is blocked behind the ear at a straight line from the tragus to the edge of the earlobe, in the groove behind the mastoid. Two milliliters injected at the groove and 1 mL superficial and anterior to the groove (MOV 2337 kb)

Video 18.6

First the occipital artery is palpated and the needle inserted medial to the artery to block the greater occipital nerve with 3 mL of local anesthetics (MOV 1734 kb)

References1

  1. 1.
    Bilotta F, Rosa G. ‘Anesthesia’ for awake neurosurgery. Curr Opin Anaesthesiol. 2009;22:560–5.CrossRefPubMedGoogle Scholar
  2. 2.
    *Bonhomme V, Franssen C, Hans P. Awake craniotomy. Eur J Anaesthesiol. 2009;26:906–12.Google Scholar
  3. 3.
    Klimek M, Verbrugge SJ, Roubos S, van der Most E, Vincent AJ, Klein J. Awake craniotomy for glioblastoma in a 9-year-old child. Anaesthesia. 2004;59:607–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Howe KL, Zhou G, July J, Totimeh T, Dakurah T, Malomo AO, et al. Teaching and sustainably implementing awake craniotomy in resource-poor settings. World Neurosurg. 2013;80:e171–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Chacko AG, Thomas SG, Babu KS, Daniel RT, Chacko G, Prabhu K, et al. Awake craniotomy and electrophysiological mapping for eloquent area tumours. Clin Neurol Neurosurg. 2013;115:329–34.CrossRefPubMedGoogle Scholar
  6. 6.
    *Sacko O, Lauwers-Cances V, Brauge D, Sesay M, Brenner A, Roux FE. Awake craniotomy vs surgery under general anesthesia for resection of supratentorial lesions. Neurosurgery. 2011;68:1192–8. discussion 8–9.Google Scholar
  7. 7.
    *Blanshard HJ, Chung F, Manninen PH, Taylor MD, Bernstein M. Awake craniotomy for removal of intracranial tumor: considerations for early discharge. Anesth Analg. 2001;92:89–94.Google Scholar
  8. 8.
    Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery. 2009;64:836–45; discussion 345–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Hol JW, Klimek M, van der Heide-Mulder M, Stronks D, Vincent AJ, Klein J, et al. Awake craniotomy induces fewer changes in the plasma amino acid profile than craniotomy under general anesthesia. J Neurosurg Anesthesiol. 2009;21:98–107.CrossRefPubMedGoogle Scholar
  10. 10.
    *Costello TG, Cormack JR. Anaesthesia for awake craniotomy: a modern approach. J Clin Neurosci. 2004;11:16–9.Google Scholar
  11. 11.
    *Hansen E, Seemann M, Zech N, Doenitz C, Luerding R, Brawanski A. Awake craniotomies without any sedation: the awake-awake-awake technique. Acta Neurochir (Wien). 2013;155:1417–24.Google Scholar
  12. 12.
    Frost EA, Booij LH. Anesthesia in the patient for awake craniotomy. Curr Opin Anaesthesiol. 2007;20:331–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Erickson KM, Cole DJ. Anesthetic considerations for awake craniotomy for epilepsy. Anesthesiol Clin. 2007;25:535–55.CrossRefPubMedGoogle Scholar
  14. 14.
    Dinsmore J. Anaesthesia for elective neurosurgery. Br J Anaesth. 2007;99:68–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Sarang A, Dinsmore J. Anaesthesia for awake craniotomy: evolution of a technique that facilitates awake neurological testing. Br J Anaesth. 2003;90:161–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Hans P, Bonhomme V, Born JD, Maertens de Noordhoudt A, Brichant JF, Dewandre PY. Target-controlled infusion of propofol and remifentanil combined with bispectral index monitoring for awake craniotomy. Anaesthesia. 2000;55:255–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Lobo F, Beiras A. Propofol and remifentanil effect-site concentrations estimated by pharmacokinetic simulation and bispectral index monitoring during craniotomy with intraoperative awakening for brain tumor resection. J Neurosurg Anesthesiol. 2007;19:183–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Soriano SG, Eldredge EA, Wang FK, Kull L, Madsen JR, Black PM, et al. The effect of propofol on intraoperative electrocorticography and cortical stimulation during awake craniotomies in children. Paediatr Anaesth. 2000;10:29–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Schelling G, Hauer D, Azad SC, Schmoelz M, Chouker A, Schmidt M, et al. Effects of general anesthesia on anandamide blood levels in humans. Anesthesiology. 2006;104:273–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Beers R, Camporesi E. Remifentanil update: clinical science and utility. CNS Drugs. 2004;18:1085–104.CrossRefPubMedGoogle Scholar
  21. 21.
    *Rozet I. Anesthesia for functional neurosurgery: the role of dexmedetomidine. Curr Opin Anaesthesiol. 2008;21:537–43.Google Scholar
  22. 22.
    Bekker AY, Kaufman B, Samir H, Doyle W. The use of dexmedetomidine infusion for awake craniotomy. Anesth Analg. 2001;92:1251–3.CrossRefPubMedGoogle Scholar
  23. 23.
    Souter MJ, Rozet I, Ojemann JG, Souter KJ, Holmes MD, Lee L, et al. Dexmedetomidine sedation during awake craniotomy for seizure resection: effects on electrocorticography. J Neurosurg Anesthesiol. 2007;19:38–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Moore 2nd TA, Markert JM, Knowlton RC. Dexmedetomidine as rescue drug during awake craniotomy for cortical motor mapping and tumor resection. Anesth Analg. 2006;102:1556–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;90:699–705.CrossRefPubMedGoogle Scholar
  26. 26.
    *Pinosky ML, Fishman RL, Reeves ST, Harvey SC, Patel S, Palesch Y, et al. The effect of bupivacaine skull block on the hemodynamic response to craniotomy. Anesth Analg. 1996;83:1256–61.Google Scholar
  27. 27.
    Watson R, Leslie K. Nerve blocks versus subcutaneous infiltration for stereotactic frame placement. Anesth Analg. 2001;92:424–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Nguyen A, Girard F, Boudreault D, Fugere F, Ruel M, Moumdjian R, et al. Scalp nerve blocks decrease the severity of pain after craniotomy. Anesth Analg. 2001;93:1272–6.CrossRefPubMedGoogle Scholar
  29. 29.
    *Geze S, Yilmaz AA, Tuzuner F. The effect of scalp block and local infiltration on the haemodynamic and stress response to skull-pin placement for craniotomy. Eur J Anaesthesiol. 2009;26:298–303.Google Scholar
  30. 30.
    Osborn I, Sebeo J. “Scalp block” during craniotomy: a classic technique revisited. J Neurosurg Anesthesiol. 2010;22:187–94.CrossRefPubMedGoogle Scholar
  31. 31.
    Piccioni F, Fanzio M. Management of anesthesia in awake craniotomy. Minerva Anestesiol. 2008;74(7–8):393–408.PubMedGoogle Scholar
  32. 32.
    Bebawy JF, Bilotta F, Koht A. A modified technique for auriculotemporal nerve blockade when performing selective scalp nerve block for craniotomy. J Neurosurg Anesthesiol. 2014;26:271–2.CrossRefPubMedGoogle Scholar
  33. 33.
    *Lobo FA, Amorim P. Anesthesia for craniotomy with intraoperative awakening: how to avoid respiratory depression and hypertension? Anesth Analg. 2006;102:1593–4. author reply 4.Google Scholar
  34. 34.
    Baldinelli F, Pedrazzoli R, Ebner H, Auricchio F. Asleep-awake-asleep technique during carotid endarterectomy: a case series. J Cardiothorac Vasc Anesth. 2010;24:550–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Audu PB, Loomba N. Use of cuffed oropharyngeal airway (COPA) for awake intracranial surgery. J Neurosurg Anesthesiol. 2004;16:144–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Olsen KS. The asleep-awake technique using propofol-remifentanil anaesthesia for awake craniotomy for cerebral tumours. Eur J Anaesthesiol. 2008;25:662–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Berger MS, Kincaid J, Ojemann GA, Lettich E. Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors. Neurosurgery. 1989;25:786–92.CrossRefPubMedGoogle Scholar
  39. 39.
    Duffau H. Contribution of cortical and subcortical electrostimulation in brain glioma surgery: methodological and functional considerations. Neurophysiol Clin. 2007;37:373–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Szelenyi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus. 2010;28:E7.CrossRefPubMedGoogle Scholar
  41. 41.
    Yingling CD, Ojemann S, Dodson B, Harrington MJ, Berger MS. Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording. J Neurosurg. 1999;91:922–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Sartorius CJ, Berger MS. Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer’s lactate to the cortex. Technical note. J Neurosurg. 1998;88:349–51.CrossRefPubMedGoogle Scholar
  43. 43.
    McNicholas E, Bilotta F, Titi L, Chandler J, Rosa G, Koht A. Transient facial nerve palsy after auriculotemporal nerve block in awake craniotomy patients. A A Case Rep. 2014;2:40–3.CrossRefPubMedGoogle Scholar
  44. 44.
    *Gabarros A, Young WL, McDermott MW, Lawton MT. Language and motor mapping during resection of brain arteriovenous malformations: indications, feasibility, and utility. Neurosurgery. 2011;68:744–52.Google Scholar
  45. 45.
    Abla AA, Lawton MT. Awake motor examination during intracranial aneurysm surgery. World Neurosurg. 2014;82:e683–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Passacantilli E, Anichini G, Cannizzaro D, Fusco F, Pedace F, Lenzi J, et al. Awake craniotomy for trapping a giant fusiform aneurysm of the middle cerebral artery. Surg Neurol Int. 2013;4:39.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Halpern CH, Wolf JA, Bale TL, Stunkard AJ, Danish SF, Grossman M, et al. Deep brain stimulation in the treatment of obesity. J Neurosurg. 2008;109:625–34.CrossRefPubMedGoogle Scholar
  48. 48.
    Awan NR, Lozano A, Hamani C. Deep brain stimulation: current and future perspectives. Neurosurg Focus. 2009;27:E2.CrossRefPubMedGoogle Scholar
  49. 49.
    Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896–908.CrossRefPubMedGoogle Scholar
  50. 50.
    Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks Jr WJ, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301:63–73.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8:67–81.CrossRefPubMedGoogle Scholar
  52. 52.
    Chakrabarti R, Ghazanwy M, Tewari A. Anesthetic challenges for deep brain stimulation: a systematic approach. N Am J Med Sci. 2014;6:359–69.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Khatib R, Ebrahim Z, Rezai A, Cata JP, Boulis NM, John Doyle D, et al. Perioperative events during deep brain stimulation: the experience at Cleveland Clinic. J Neurosurg Anesthesiol. 2008;20:36–40.CrossRefPubMedGoogle Scholar
  54. 54.
    Krauss JK, Akeyson EW, Giam P, Jankovic J. Propofol-induced dyskinesias in Parkinson’s disease. Anesth Analg. 1996;83:420–2.PubMedGoogle Scholar
  55. 55.
    Nicholson G, Pereira AC, Hall GM. Parkinson’s disease and anaesthesia. Br J Anaesth. 2002;89:904–16.CrossRefPubMedGoogle Scholar
  56. 56.
    Poon CC, Irwin MG. Anaesthesia for deep brain stimulation and in patients with implanted neurostimulator devices. Br J Anaesth. 2009;103:152–65.CrossRefPubMedGoogle Scholar
  57. 57.
    Venkatraghavan L, Manninen P, Mak P, Lukitto K, Hodaie M, Lozano A. Anesthesia for functional neurosurgery: review of complications. J Neurosurg Anesthesiol. 2006;18:64–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Kral T, Kurthen M, Schramm J, Urbach H, Meyer B. Stimulation mapping via implanted grid electrodes prior to surgery for gliomas in highly eloquent cortex. Neurosurgery. 2006;58(1 Suppl):ONS36–43; discussion ONS36–43.Google Scholar
  59. 59.
    Rerkasem K, Rothwell PM. Routine or selective carotid artery shunting for carotid endarterectomy and different methods of monitoring in selective shunting. Stroke. 2009;40:e564–72.CrossRefPubMedGoogle Scholar
  60. 60.
    Hans SS, Jareunpoon O. Prospective evaluation of electroencephalography, carotid artery stump pressure, and neurologic changes during 314 consecutive carotid endarterectomies performed in awake patients. J Vasc Surg. 2007;45:511–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Moritz S, Kasprzak P, Woertgen C, Taeger K, Metz C. The accuracy of jugular bulb venous monitoring in detecting cerebral ischemia in awake patients undergoing carotid endarterectomy. J Neurosurg Anesthesiol. 2008;20:8–14.CrossRefPubMedGoogle Scholar
  62. 62.
    Stoneham MD, Knighton JD. Regional anaesthesia for carotid endarterectomy. Br J Anaesth. 1999;82:910–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Guay J. Regional or general anesthesia for carotid endarterectomy? Evidence from published prospective and retrospective studies. J Cardiothorac Vasc Anesth. 2007;21:127–32.CrossRefPubMedGoogle Scholar
  64. 64.
    Lewis SC, Warlow CP, Bodenham AR, Colam B, Rothwell PM, Torgerson D, et al. General anaesthesia versus local anaesthesia for carotid surgery (GALA): a multicentre, randomised controlled trial. Lancet. 2008;372(9656):2132–42.CrossRefPubMedGoogle Scholar
  65. 65.
    Bekker AY, Basile J, Gold M, Riles T, Adelman M, Cuff G, et al. Dexmedetomidine for awake carotid endarterectomy: efficacy, hemodynamic profile, and side effects. J Neurosurg Anesthesiol. 2004;16:126–35.CrossRefPubMedGoogle Scholar
  66. 66.
    Stoneham MD, Lodi O, de Beer TC, Sear JW. Increased oxygen administration improves cerebral oxygenation in patients undergoing awake carotid surgery. Anesth Analg. 2008;107:1670–5.CrossRefPubMedGoogle Scholar
  67. 67.
    Winnie AP, Ramamurthy S, Durrani Z, Radonjic R. Interscalene cervical plexus block: a single-injection technic. Anesth Analg. 1975;54:370–5.PubMedGoogle Scholar
  68. 68.
    Moore DC. Regional block: a handbook for use in the clinical practice of medicine and surgery. Springfield: Charles C. Thomas; 1978.Google Scholar
  69. 69.
    Moritz S, Kasprzak P, Arlt M, Taeger K, Metz C. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology. 2007;107:563–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Calligaro KD, Dougherty MJ. Correlation of carotid artery stump pressure and neurologic changes during 474 carotid endarterectomies performed in awake patients. J Vasc Surg. 2005;42:684–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Kwaan JH, Peterson GJ, Connolly JE. Stump pressure: an unreliable guide for shunting during carotid endarterectomy. Arch Surg. 1980;115:1083–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Rigamonti A, Scandroglio M, Minicucci F, Magrin S, Carozzo A, Casati A. A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy. J Clin Anesth. 2005;17:426–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departments of Anesthesiology, Neurological Surgery and NeurologyNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Department of NeurosurgeryUniversity of AachenAachenGermany
  3. 3.Department of Neurological SurgeryNorthwestern Memorial HospitalChicagoUSA

Personalised recommendations