Advertisement

SPEXOR: Spinal Exoskeletal Robot for Low Back Pain Prevention and Vocational Reintegration

  • Jan Babič
  • Katja Mombaur
  • Dirk Lefeber
  • Jaap van Dieën
  • Bernhard Graimann
  • Michael Russold
  • Nejc Šarabon
  • Han Houdijk
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 16)

Abstract

Most assistive robotic devices are exoskeletons which assist or augment the motion of the limbs and neglect the role of the spinal column in transferring load from the upper body and arms to the legs. In the SPEXOR project we will fill this gap and design a novel spinal exoskeleton to prevent low-back pain in able bodied workers and to support workers with low-back pain in vocational rehabilitation.

Keywords

Passive Device Defense Advance Research Project Agency Gravity Compensation Awkward Posture Reduce Work Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Members of SPEXOR consortium: J. Babič (coordinator), T. Petrič, R. Goljat: Jožef Stefan Institute, Slovenia; K. Mombaur (PI), M. Sreenivasa, M. Millard, P. Manns: Heidelberg University, Germany; D. Lefeber (PI), C. Rodriguez-Guerrero, L. De Rijcke, M. Näf: Vrije Universiteit Brussel, Belgium; J. van Dieën (PI), I. Kingma, G. Faber, S. Bruin, A. Koopman: VU University Amsterdam, The Netherlands; B. Graimann (PI), M. Tüttemann, A. Kurzweg, J. Bornmann, H. Glindemann: Otto Bock Healthcare GmbH, Germany; M. Russold (PI), D. Pieringer: Otto Bock Healthcare Products GmbH, Austria; N. Šarabon (PI), A. Panjan, K. Kastelic, M. Savić: S2P Science to practice d.o.o., Slovenia; H. Houdijk (PI), C. van Bennekom (PI), J. Nachtegaal, S. Baltrusch: Heliomare, The Netherlands.

Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 687662 - SPEXOR.

Project webpage: http://www.spexor.eu.

References

  1. 1.
    Buchbinder, R., Blyth, F.M., March, L.M., Brooks, P., Woolf, D.A., Hoy, D.G.: Placing the global burden of low back pain in context. Best Pract. Res.: Clin. Rheumatol. 27, 575–589 (2013)CrossRefGoogle Scholar
  2. 2.
    Hoy, D., March, L., Brooks, P., Blyth, F., Woolf, A., Bain, C., Williams, G., Smith, E., Vos, T., Barendregt, J.: The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. (2014)Google Scholar
  3. 3.
    Lambeek, L.C., van Tulder, M.W., Swinkels, I.C.S., Koppes, L.L.J., Anema, J.R., van Mechelen, W.: The trend in total cost of back pain in The Netherlands in the period 2002 to 2007. Spine 36(13), 1050–1058 (2011)CrossRefGoogle Scholar
  4. 4.
    Waddell, G., Burton, A.K.: Occupational health guidelines for the management of low back pain at work: evidence review. Occup. Med. 51, 124–135 (2001)CrossRefGoogle Scholar
  5. 5.
    Spinal Exoskeletal Robot for Low Back Pain Prevention and Vocational Reintegration. http://www.spexor.eu
  6. 6.
    Yamamoto, K., Ishii, M., Noborisaka, H., Hyodo, K.: Stand alone wearable power assisting suit-sensing and control systems. In: International Workshop on Robot and Human Interactive Communication, pp. 661–666 (2004)Google Scholar
  7. 7.
    Kawamoto, H., Sankai, Y.: Power assist method based on phase sequence and muscle force condition for HAL. Adv. Robot. 19, 717–734 (2005)CrossRefGoogle Scholar
  8. 8.
    Kazerooni, H.: Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). Int. J. Robot. Res. 25(5–6), 561–573 (2006)Google Scholar
  9. 9.
    Imamura, Y., Tanaka, T., Suzuki, Y., Takizawa, K., Yamanaka, M.: Motion-based design of elastic belts for passive assistive device using musculoskeletal model. In: International Conference on Robotics and Biomimetics, pp. 1343–1348 (2011)Google Scholar
  10. 10.
    Rahman, T., Sample, W., Jayakumar, S., King, M.M., Wee, J.Y., Seliktar, R., Alexander, M., Scavina, M., Clark, A.: Passive exoskeletons for assisting limb movement. J. Rehabil. Res. Dev. 43(5), 583 (2006)Google Scholar
  11. 11.
    Vallery, H., Veneman, J., van Asseldonk, E., Ekkelenkamp, R., Buss, M., van Der Kooij, H.: Compliant actuation of rehabilitation robots. IEEE Robot. Autom. Mag. 15(3), 60–69 (2008)CrossRefGoogle Scholar
  12. 12.
    Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D., Carloni, R., Wolf, S.: Variable impedance actuators: moving the robots of tomorrow. In: International Conference on Intelligent Robots and Systems, pp. 5454–5455 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jan Babič
    • 1
  • Katja Mombaur
    • 2
  • Dirk Lefeber
    • 3
  • Jaap van Dieën
    • 4
  • Bernhard Graimann
    • 5
  • Michael Russold
    • 6
  • Nejc Šarabon
    • 7
  • Han Houdijk
    • 8
  1. 1.Department of AutomationBiocybernetics and Robotics, Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Department of Optimization in Robotics & BiomechanicsHeidelberg UniversityHeidelbergGermany
  3. 3.Robotics & Multibody Mechanics Research Group, Department of Mechanical EngineeringVrije Universiteit BrusselIxellesBelgium
  4. 4.MOVE Research Institute AmsterdamAmsterdamThe Netherlands
  5. 5.Department of Translations Research and Knowledge ManagementOtto Bock Healthcare GmbHDuderstadtGermany
  6. 6.Department of Translational ResearchOtto Bock Healthcare Products GmbHWienAustria
  7. 7.Department of Health StudyUniversity of Primorska and with S2P Science To Practice d.o.oKoperSlovenia
  8. 8.Human Movement Sciences Amsterdam and with Heliomare Research and DevelopmentAmsterdamThe Netherlands

Personalised recommendations