Advertisement

Endogenous Control of Powered Lower-Limb Exoskeleton

  • Kyuhwa Lee
  • Dong Liu
  • Laetitia Perroud
  • Ricardo Chavarriaga
  • José del R. Millán
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 16)

Abstract

We present an online decoding method for controlling a powered lower-limb exoskeleton using endogenously generated electroencephalogram (EEG) signals of human users. By performing a series of binary classifications, users control the exoskeleton in three directions: walk front, turn left and turn right. During the first classification phase, the user’s intention to either walk front or change direction is detected. If the user’s intention to change direction is detected, a subsequent classification for turning left or right is performed. Five subjects were able to successfully complete the 3-way navigation task while mounted in the exoskeleton. We report the improved accuracy of our cascaded protocol over a baseline method.

References

  1. 1.
    Bogue, R.: Robotic exoskeletons: a review of recent progress. Ind. Robot Int. J. 42(1), 5–10 (2015)CrossRefGoogle Scholar
  2. 2.
    Millán, J.D.R., et al.: Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4, 161 (2010)Google Scholar
  3. 3.
    Kwak, N.S., Müller, K.R., Lee, S.W.: A lower limb exoskeleton control system based on steady state visual evoked potentials. J. Neural Eng. 12(5), 056009 (2015)CrossRefGoogle Scholar
  4. 4.
    Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 382(1), 169–174 (2005)CrossRefGoogle Scholar
  5. 5.
    Contreras-Vidal, J.L., Grossman, R.G.: NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. In: EMBC, 2013, pp. 1579–1582 (2013)Google Scholar
  6. 6.
    Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE TNSRE 17(1), 2–8 (2009)Google Scholar
  10. 10.
    Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J.C., Francisco, G.E., Pons, J.L., Contreras-Vidal, J.L.: The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J. NeuroEng. Rehab. 12(1), 1 (2015)CrossRefGoogle Scholar
  11. 11.
    Quintero, H.A., Farris, R.J., Goldfarb, M.: Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals. In: ICORR, 2011, pp. 1–6 (2011)Google Scholar
  12. 12.
    Percival, D.B., Walden, A.T.: Spectral Analysis for Physical Applications. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  13. 13.
    Carlson, T., Millan, J.D.R.: Brain-controlled wheelchairs: a robotic architecture. IEEE Robot. Autom. Mag. 20, 65–73 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kyuhwa Lee
    • 1
  • Dong Liu
    • 1
  • Laetitia Perroud
    • 1
  • Ricardo Chavarriaga
    • 1
  • José del R. Millán
    • 1
  1. 1.Brain-Machine Interface Lab, School of Engineering, Center for NeuroprostheticsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations