Efficient Algorithms for Association Finding and Frequent Association Pattern Mining

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9981)

Abstract

Finding associations between entities is a common information need in many areas. It has been facilitated by the increasing amount of graph-structured data on the Web describing relations between entities. In this paper, we define an association connecting multiple entities in a graph as a minimal connected subgraph containing all of them. We propose an efficient graph search algorithm for finding associations, which prunes the search space by exploiting distances between entities computed based on a distance oracle. Having found a possibly large group of associations, we propose to mine frequent association patterns as a conceptual abstract summarizing notable subgroups to be explored, and present an efficient mining algorithm based on canonical codes and partitions. Extensive experiments on large, real RDF datasets demonstrate the efficiency of the proposed algorithms.

Keywords

Association finding Canonical code Distance oracle Frequent association pattern mining Graph search 

References

  1. 1.
    Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In: 2013 ACM SIGMOD International Conference on Management of Data, pp. 349–360 (2013)Google Scholar
  2. 2.
    Anyanwu, K., Maduko, A., Sheth, A.: SemRank: ranking complex relationship search results on the semantic web. In: 14th International Conference on World Wide Web, pp. 117–127 (2005)Google Scholar
  3. 3.
    Anyanwu, K., Sheth, A.: \(\rho \)-queries: enabling querying for semantic associations on the semantic web. In: 12th International Conference on World Wide Web, pp. 690–699 (2003)Google Scholar
  4. 4.
    Chen, C., Wang, G., Liu, H., Xin, J., Yuan, Y.: SISP: a new framework for searching the informative subgraph based on PSO. In: 20th ACM International Conference on Information and Knowledge Management, pp. 453–462 (2011)Google Scholar
  5. 5.
    Chen, N., Prasanna, V.K.: Learning to rank complex semantic relationships. Int. J. Semant. Web Inf. Syst. 8(4), 1–19 (2012)CrossRefGoogle Scholar
  6. 6.
    Cheng, G., Zhang, Y., Qu, Y.: Explass: exploring associations between entities via top-K ontological patterns and facets. In: Mika, P., et al. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 422–437. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Fang, L., Das Sarma, A., Yu, C., Bohannon, P.: REX: explaining relationships between entity pairs. Proc. VLDB Endow. 5(3), 241–252 (2011)CrossRefGoogle Scholar
  8. 8.
    Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder: revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol. 5887, pp. 182–187. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Heim, P., Lohmann, S., Stegemann, T.: Interactive relationship discovery via the semantic web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 303–317. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Janik, M., Kochut, K.J.: BRAHMS: a workbench RDF store and high performance memory system for semantic association discovery. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 431–445. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Jiménez, A., Berzal, F., Cubero, J.-C.: Frequent tree pattern mining: a survey. Intell. Data Anal. 14(6), 603–622 (2010)Google Scholar
  12. 12.
    Kasneci, G., Elbassuoni, S., Weikum, G.: MING: mining informative entity relationship subgraphs. In: 18th ACM Conference on Information and Knowledge Management, pp. 1653–1656 (2009)Google Scholar
  13. 13.
    Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M., Weikum, G.: STAR: steiner-tree approximation in relationship graphs. In: IEEE 25th International Conference on Data Engineering, pp. 868–879 (2009)Google Scholar
  14. 14.
    Luo, G., Tang, C., Tian, Y.-L.: Answering relationship queries on the web. In: 16th International Conference on World Wide Web, pp. 561–570 (2007)Google Scholar
  15. 15.
    Pirró, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 622–639. Springer, Berlin (2015)CrossRefGoogle Scholar
  16. 16.
    Sommer, C.: Shortest-path queries in static networks. ACM Comput. Surv. 46(4), 45 (2014)CrossRefMATHGoogle Scholar
  17. 17.
    Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solutions. In: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 404–413 (2006)Google Scholar
  18. 18.
    Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-Based interpretation of keywords for semantic search. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 523–536. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Yang, M., Ding, B., Chaudhuri, S., Chakrabarti, K.: Finding patterns in a knowledge base using keywords to compose table answers. Proc. VLDB Endow. 7(14), 1809–1820 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhou, M., Pan, Y., Wu, Y.: Conkar: constraint keyword-based association discovery. In: 20th ACM International Conference on Information and Knowledge Management, pp. 2553–2556 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.National Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingChina

Personalised recommendations