SPARQL-to-SQL on Internet of Things Databases and Streams

  • Eugene Siow
  • Thanassis Tiropanis
  • Wendy Hall
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9981)


To realise a semantic Web of Things, the challenge of achieving efficient Resource Description Format (RDF) storage and SPARQL query performance on Internet of Things (IoT) devices with limited resources has to be addressed. State-of-the-art SPARQL-to-SQL engines have been shown to outperform RDF stores on some benchmarks. In this paper, we describe an optimisation to the SPARQL-to-SQL approach, based on a study of time-series IoT data structures, that employs metadata abstraction and efficient translation by reusing existing SPARQL engines to produce Linked Data ‘just-in-time’. We evaluate our approach against RDF stores, state-of-the-art SPARQL-to-SQL engines and streaming SPARQL engines, in the context of IoT data and scenarios. We show that storage efficiency, with succinct row storage, and query performance can be improved from 2 times to 3 orders of magnitude.


SPARQL SQL Query translation Analytics Internet of Things Web of Things 


  1. 1.
    Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF streams with C-SPARQL. ACM SIGMOD Rec. 39(1), 20 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barker, S., Mishra, A., Irwin, D., Cecchet, E.: Smart*: an open data set and tools for enabling research in sustainable homes. In: Proceedings of the Workshop on Data Mining Applications in Sustainability (2012)Google Scholar
  3. 3.
    Barnaghi, P., Wang, W.: Semantics for the internet of things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. 8(1), 1–21 (2012)CrossRefGoogle Scholar
  4. 4.
    Bishop, B., Kiryakov, A., Ognyanoff, D.: OWLIM: a family of scalable semantic repositories. Semant. Web 2(1), 33–42 (2011)Google Scholar
  5. 5.
    Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)CrossRefGoogle Scholar
  7. 7.
    Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation. Data Knowl. Eng. 68(10), 973–1000 (2009)CrossRefGoogle Scholar
  8. 8.
    Erling, O.: Implementing a sparql compliant RDF triple store using a SQL-ORDBMS. Technical report, OpenLink Software (2001)Google Scholar
  9. 9.
    International Telecommunication Union: Overview of the Internet of things. Technical report (2012)Google Scholar
  10. 10.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., et al. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Neumann, T., Weikum, G.: x-RDF-3X. Proc. VLDB Endow. 3, 256–263 (2010)CrossRefGoogle Scholar
  12. 12.
    Patni, H., Henson, C., Sheth, A.: Linked sensor data. In: Proceedings of the International Symposium on Collaborative Technologies and Systems (2010)Google Scholar
  13. 13.
    Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 479–489 (2014)Google Scholar
  14. 14.
    Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings. Web Semant. Sci. Serv. Agents WWW 33, 141–169 (2014)CrossRefGoogle Scholar
  15. 15.
    Stonebraker, M., Abadi, D., Batkin, A.: C-store: a column-oriented DBMS. In: Proceedings of VLDB, pp. 553–564 (2005)Google Scholar
  16. 16.
    Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. In: Proceedings of the VLDB Endowment (2008)Google Scholar
  17. 17.
    Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: a streaming RDF/SPARQL benchmark. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations