Multi-level Semantic Labelling of Numerical Values

  • Sebastian Neumaier
  • Jürgen UmbrichEmail author
  • Josiane Xavier Parreira
  • Axel Polleres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9981)


With the success of Open Data a huge amount of tabular data sources became available that could potentially be mapped and linked into the Web of (Linked) Data. Most existing approaches to “semantically label” such tabular data rely on mappings of textual information to classes, properties, or instances in RDF knowledge bases in order to link – and eventually transform – tabular data into RDF. However, as we will illustrate, Open Data tables typically contain a large portion of numerical columns and/or non-textual headers; therefore solutions that solely focus on textual “cues” are only partially applicable for mapping such data sources. We propose an approach to find and rank candidates of semantic labels and context descriptions for a given bag of numerical values. To this end, we apply a hierarchical clustering over information taken from DBpedia to build a background knowledge graph of possible “semantic contexts” for bags of numerical values, over which we perform a nearest neighbour search to rank the most likely candidates. Our evaluation shows that our approach can assign fine-grained semantic labels, when there is enough supporting evidence in the background knowledge graph. In other cases, our approach can nevertheless assign high level contexts to the data, which could potentially be used in combination with other approaches to narrow down the search space of possible labels.


Aggregation Function Tabular Data Semantic Label Test Node Type Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Austrian Research Promotion Agency (FFG) under the project ADEQUATe (grant no. 849982).


  1. 1.
    Adelfio, M.D., Samet, H.: Schema extraction for tabular data on the web. Proc. VLDB Endow. 6(6), 421–432 (2013)CrossRefGoogle Scholar
  2. 2.
    Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A direct mapping of relational data to RDF, W3C Recommendation, September 2012.
  3. 3.
    Cruz, I.F., Ganesh, V.R., Mirrezaei, S.I.: Semantic extraction of geographic data from web tables for big data integration. In: Proceedings of the 7th Workshop on Geographic Information Retrieval, GIR 2013, pp. 19–26. ACM, New York (2013)Google Scholar
  4. 4.
    Das Sarma, A., Fang, L., Gupta, N., Halevy, A., Lee, H., Wu, F., Xin, R., Yu, C.: Finding related tables. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 817–828. ACM (2012)Google Scholar
  5. 5.
    Ermilov, I., Auer, S., Stadler, C.: User-driven semantic mapping of tabular data. In: Proceedings of the 9th International Conference on Semantic Systems, I-SEMANTICS 2013, pp. 105–112. ACM, New York (2013)Google Scholar
  6. 6.
    Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors in numerical linked data using cross-checked outlier detection. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 357–372. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Gal, A., Roitman, H., Sagi, T.: From diversity-based prediction to better ontology & schema matching. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, pp. 1145–1155 (2016)Google Scholar
  8. 8.
    Halevy, A.Y., Noy, N.F., Sarawagi, S., Whang, S.E., Yu, X.: Discovering structure in the universe of attribute names. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, pp. 939–949 (2016)Google Scholar
  9. 9.
    Lopez, V., Kotoulas, S., Sbodio, M.L., Stephenson, M., Gkoulalas-Divanis, A., Aonghusa, P.M.: QuerioCity: a linked data platform for urban information management. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 148–163. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ramnandan, S.K., Mittal, A., Knoblock, C.A., Szekely, P.: Assigning semantic labels to data sources. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 403–417. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  12. 12.
    Rastan, R.: Towards generic framework for tabular data extraction and management in documents. In: Proceedings of the Sixth Workshop on Ph.D. Students in Information and Knowledge Management, PIKM 2013, pp. 3–10. ACM, New York (2013)Google Scholar
  13. 13.
    Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML tables to DBpedia. In: Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, WIMS 2015, Larnaca, Cyprus, pp. 10:1–10:6 (2015)Google Scholar
  14. 14.
    Ritze, D., Lehmberg, O., Oulabi, Y., Bizer, C.: Profiling the potential of web tables for augmenting cross-domain knowledge bases. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, pp. 251–261 (2016)Google Scholar
  15. 15.
    Rong, S., Niu, X., Xiang, E.W., Wang, H., Yang, Q., Yu, Y.: A machine learning approach for instance matching based on similarity metrics. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 460–475. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Syed, Z., Finin, T., Mulwad, V., Joshi, A.: Exploiting a web of semantic data for interpreting tables. In: Proceedings of the Second Web Science Conference, April 2010Google Scholar
  17. 17.
    Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: A scalable approach to learn semantic models of structured sources. In: Proceedings of the 8th IEEE International Conference on Semantic Computing (ICSC 2014) (2014)Google Scholar
  18. 18.
    Tandy, J., Herman, I., Kellogg, G.: Generating RDF from tabular data on the web, W3C Recommendation, December 2015.
  19. 19.
    Umbrich, J., Neumaier, S., Polleres, A.: Quality assessment & evolution of open data portals. In: IEEE International Conference on Open and Big Data, Rome, Italy, August 2015Google Scholar
  20. 20.
    Venetis, P., Halevy, A.Y., Madhavan, J., Pasca, M., Shen, W., Wu, F., Miao, G., Wu, C.: Recovering semantics of tables on the web. PVLDB 4(9), 528–538 (2011)Google Scholar
  21. 21.
    Wang, J., Wang, H., Wang, Z., Zhu, K.Q.: Understanding tables on the web. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 141–155. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Wienand, D., Paulheim, H.: Detecting incorrect numerical data in DBpedia. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 504–518. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, M., Chakrabarti, K.: Infogather+: semantic matching and annotation of numeric and time-varying attributes in web tables. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 145–156. ACM, New York (2013)Google Scholar
  24. 24.
    Zhang, Z.: Towards efficient and effective semantic table interpretation. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 487–502. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sebastian Neumaier
    • 1
  • Jürgen Umbrich
    • 1
    Email author
  • Josiane Xavier Parreira
    • 2
  • Axel Polleres
    • 1
  1. 1.Vienna University of Economics and BusinessViennaAustria
  2. 2.Siemens AG ÖsterreichViennaAustria

Personalised recommendations