Advertisement

Algebraic Calculi for Weighted Ontology Alignments

  • Armen InantsEmail author
  • Manuel Atencia
  • Jérôme Euzenat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9981)

Abstract

Alignments between ontologies usually come with numerical attributes expressing the confidence of each correspondence. Semantics supporting such confidences must generalise the semantics of alignments without confidence. There exists a semantics which satisfies this but introduces a discontinuity between weighted and non-weighted interpretations. Moreover, it does not provide a calculus for reasoning with weighted ontology alignments. This paper introduces a calculus for such alignments. It is given by an infinite relation-type algebra, the elements of which are weighted taxonomic relations. In addition, it approximates the non-weighted case in a continuous manner.

Keywords

Weighted ontology alignment Algebraic reasoning Qualitative calculi 

Notes

Acknowledgement

This research has been partially supported by the joint NSFC-ANR Lindicle project (12-IS01-0002) with Tsinghua university.

References

  1. 1.
    Atencia, M., Borgida, A., Euzenat, J., Ghidini, C., Serafini, L.: A formal semantics for weighted ontology mappings. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 17–33. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35176-1_2 CrossRefGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The description logic handbook: theory, implementation, and applications. Cambridge University Press, New York (2003)zbMATHGoogle Scholar
  3. 3.
    Bodirsky, M., Dalmau, V.: Datalog and constraint satisfaction with infinite templates. J. Comput. Syst. Sci. 79(1), 79–100 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borgida, A., Serafini, L.: Distributed description logics: assimilating information from peer sources. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I. LNCS, vol. 2800, pp. 153–184. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Dylla, F., Mossakowski, T., Schneider, T., Wolter, D.: Algebraic properties of qualitative spatio-temporal calculi. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 516–536. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-01790-7_28 CrossRefGoogle Scholar
  6. 6.
    Euzenat, J.: Algebras of ontology alignment relations. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 387–402. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88564-1_25 CrossRefGoogle Scholar
  7. 7.
    Euzenat, J.: An algebraic approach to granularity in qualitative time, space representation. In: Proceedings of the IJCAI-95, pp. 894–900 (1995)Google Scholar
  8. 8.
    Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gantner, Z., Westphal, M., Wölfl, S.: GQR-a fast reasoner for binary qualitative constraint calculi. In: Proceedings of the AAAI, vol. 8 (2008)Google Scholar
  10. 10.
    Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer Undergraduate Texts in Mathematics and Technology. Springer, New York (2009)zbMATHGoogle Scholar
  11. 11.
    Hodges, W.: Model Theory Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1993)Google Scholar
  12. 12.
    Inants, A.: Qualitative calculi with heterogeneous universes. Ph.D. thesis. University of Grenoble Alpes (2016)Google Scholar
  13. 13.
    Inants, A., Euzenat, J.: An algebra of qualitative taxonomical relations for ontology alignments. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 253–268. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25007-6_15 CrossRefGoogle Scholar
  14. 14.
    Ligozat, G., Renz, J.: What is a qualitative calculus? A general framework. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNAI, vol. 3157, pp. 53–64. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28633-2_8 CrossRefGoogle Scholar
  15. 15.
    Locoro, A., David, J., Euzenat, J.: Context-based matching: design of a flexible framework and experiment. J. Data Semant. 3(1), 25–46 (2014)CrossRefGoogle Scholar
  16. 16.
    Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilistic description logic programs for representing ontology mappings. Ann. Math. Artif. Intell. 63(3–4), 385–425 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wolter, D.: SparQ - a spatial reasoning toolbox. In: AAAI Spring Symposium: Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, p. 53 (2009)Google Scholar
  18. 18.
    Zimmermann, A., Euzenat, J.: Three semantics for distributed systems and their relations with alignment composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 16–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Armen Inants
    • 1
    Email author
  • Manuel Atencia
    • 1
  • Jérôme Euzenat
    • 1
  1. 1.Inria and University Grenoble AlpesGrenobleFrance

Personalised recommendations