How Hard is It to Verify Flat Affine Counter Systems with the Finite Monoid Property?

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9938)

Abstract

We study several decision problems for counter systems with guards defined by convex polyhedra and updates defined by affine transformations. In general, the reachability problem is undecidable for such systems. Decidability can be achieved by imposing two restrictions: (1) the control structure of the counter system is flat, meaning that nested loops are forbidden, and (2) the multiplicative monoid generated by the affine update matrices present in the system is finite. We provide complexity bounds for several decision problems of such systems, by proving that reachability and model checking for Past Linear Temporal Logic stands in the second level of the polynomial hierarchy \(\varSigma ^P_2\), while model checking for First Order Logic is PSPACE-complete.

References

  1. 1.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Bardin, S., Finkel, A., Petrucci, J.L.L.: FAST: fast acceleration of symbolic transition systems. http://tapas.labri.fr/trac/wiki/FASTer
  3. 3.
    Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-dimensional vector addition systems with states is PSPACE-complete. CoRR abs/1412.4259 (2014). http://arxiv.org/abs/1412.4259
  4. 4.
    Boigelot, B.: Symbolic methods for exploring infinite state spaces. Ph.D., Univ. de Liège (1999)Google Scholar
  5. 5.
    Bozga, M., Iosif, R., Konecný, F.: Deciding conditional termination. Log. Methods Comput. Sci. 10(3), 1–61 (2014)MathSciNetMATHGoogle Scholar
  6. 6.
    Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Demri, S., Dhar, A.K., Sangnier, A.: On the complexity of verifying regular properties on flat counter systems. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 162–173. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    Demri, S., Dhar, A.K., Sangnier, A.: Equivalence between model-checking flat counter systems and Presburger arithmetic. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 85–97. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Demri, S., Dhar, A.K., Sangnier, A.: Taming past LTL and flat counter systems. Inf. Comput. 242, 306–339 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking CTL* over flat Presburger counter systems. J. Appl. Non-Class. Log. 20(4), 313–344 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Finkel, A., Leroux, J.: How to compose Presburger-accelerations: applications to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in succinctly represented control flow graphs. Logical Methods Comput. Sci. 8(3) (2012)Google Scholar
  14. 14.
    Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model checking succinct and parametric one-counter automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 575–586. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn multicounter machines. J. Comput. Syst. Sci. 22, 220–229 (1981)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In: CSL-LICS 2014, pp. 47:1–47:10. ACM (2014)Google Scholar
  17. 17.
    Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating interpolants. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 187–202. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Iosif, R., Sangnier, A.: How hard is it to verify flat affine counter systems with the finite monoid property? CoRR abs/1605.05836 (2016). http://arxiv.org/abs/1605.05836
  19. 19.
    Konecny, F., Iosif, R., Bozga, M.: FLATA: a verification toolset for counter machines (2009). http://nts.imag.fr/index.php/Flata
  20. 20.
    Kuhtz, L., Finkbeiner, B.: Weak Kripke structures and LTL. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 419–433. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Leroux, J., Sutre, G.: On flatness for 2-Dimensional vector addition systems with states. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 402–416. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Lipton, R.J.: The reachability problem is exponential-space-hard. Technical report 62, Department of Computer Science, Yale University (1976)Google Scholar
  23. 23.
    Markey, N., Schnoebelen, P.: Model checking a path. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Upper Saddle River (1967)MATHGoogle Scholar
  25. 25.
    Sistla, A., Clarke, E.: The complexity of propositional linear temporal logic. J. ACM 32(3), 733–749 (1985)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Stockmeyer, L.J.: The complexity of decision problems in automata and logic. Ph.D. thesis, MIT (1974)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Verimag, Université Grenoble Alpes, CNRSGrenobleFrance
  2. 2.IRIF, Université Paris Diderot, CNRSParisFrance

Personalised recommendations