STL Model Checking of Continuous and Hybrid Systems

  • Hendrik Roehm
  • Jens Oehlerking
  • Thomas Heinz
  • Matthias Althoff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9938)

Abstract

Signal Temporal Logic (STL) is a formalism for reasoning about temporal properties of continuous-time traces of hybrid systems. Previous work on this subject mostly focuses on robust satisfaction of an STL formula for a particular trace. In contrast, we present a method solving the problem of formally verifying an STL formula for continuous and hybrid system models, which exhibit uncountably many traces. We consider an abstraction of a model as an evolution of reachable sets. Through leveraging the representation of the abstraction, the continuous-time verification problem is reduced to a discrete-time problem. For the given abstraction, the reduction to discrete-time and our decision procedure are sound and complete for finitely represented reach sequences and sampled time STL formulas. Our method does not rely on a special representation of reachable sets and thus any reachability analysis tool can be used to generate the reachable sets. The benefit of the method is illustrated on an example from the context of automated driving.

Keywords

Model checking Reachability analysis Hybrid systems Temporal logic Continuous time 

References

  1. 1.
    Ahmadyan, S.N., Kumar, J.A., Vasudevan, S.: Runtime verification of nonlinear analog circuits using incremental time-augmented RRT algorithm. In: Proceedings of Design, Test & Automation in Europe (2013)Google Scholar
  2. 2.
    Althoff, M.: An introduction to CORA . In: Proceedings of the Workshop on Applied Verification for Continuous and Hybrid Systems, pp. 120–151 (2015)Google Scholar
  3. 3.
    Althoff, M., Dolan, J.M.: Reachability computation of low-order models for the safety verification of high-order road vehicle models. In: American Control Conference, pp. 3559–3566. IEEE (2012)Google Scholar
  4. 4.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: Proceedings of 5th Symposium on Logic in Computer Science, pp. 414–425 (1990)Google Scholar
  5. 5.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Asarin, E., et al.: Recent progress in continuous and hybrid reachability analysis. In: Conference on Computer Aided Control Systems Design, pp. 1582–1587 (2006)Google Scholar
  7. 7.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  8. 8.
    Bresolin, D.: HyLTL: a temporal logic for model checking hybrid systems. In: Proceedings Third International Workshop on Hybrid Autonomous Systems, pp. 73–84. HAS (2013)Google Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  10. 10.
    Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015)Google Scholar
  11. 11.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Computer Aided Verification, pp. 379–395 (2011)Google Scholar
  13. 13.
    Guéguen, H., Lefebvre, M., Zaytoon, J., Nasri, O.: Safety verification and reachability analysis for hybrid systems. Ann. Rev. Control 33(1), 25–36 (2009)CrossRefGoogle Scholar
  14. 14.
    Lee, E.A.: CPS foundations. In: Design Automation Conference, pp. 737–742 (2010)Google Scholar
  15. 15.
    Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance based on formal specifications. In: Proceedings of the IntemationaI Conference on Parallel and Distributed Processing Techniques and Applications (1999)Google Scholar
  16. 16.
    Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits. J. Softw. Tools Technol. Transfer 15, 247–268 (2013)CrossRefGoogle Scholar
  18. 18.
    Mitra, S., Wongpiromsarn, T., Murray, R.M.: Verifying cyber-physical interactions in safety-critical systems. IEEE Secur. Priv. 11(4), 28–37 (2013)CrossRefGoogle Scholar
  19. 19.
    Pinto, A., Sangiovanni-Vincentelli, A.L., Carloni, L.P., Passerone, R.: Interchange formats for hybrid systems: review and proposal. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 526–541. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 473–486. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Poovendran, R.: Cyberphysical systems: close encounters between two parallel worlds. Proc. IEEE 98(8), 1363–1366 (2010)CrossRefGoogle Scholar
  22. 22.
    Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: Design Automation Conference, pp. 731–736 (2010)Google Scholar
  23. 23.
    Sanwal, M.U., Hasan, O.: Formal verification of cyber-physical systems: coping with continuous elements. In: Proceedings of the 16th International Conference on Computational Science and its Applications, pp. 358–371 (2013)Google Scholar
  24. 24.
    Sauter, G., Dierks, H., Fränzle, M., Hansen, M.R.: Lightweight hybrid model checking facilitating online prediction of temporal properties. In: Proceedings of the 21st Nordic Workshop on Programming Theory, NWPT09, pp. 20–22 (2009)Google Scholar
  25. 25.
    Smirnov, G.V.: Introduction to the Theory of Differential Inclusions. American Mathematical Society, Providence (2002)MATHGoogle Scholar
  26. 26.
    Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for hybrid embedded systems. In: Model-Based Testing and Monitoring for Hybrid Embedded Systems, pp. 487–492 (2004)Google Scholar
  27. 27.
    Wang, Z., Zaki, M.H., Tahar, S.: Statistical runtime verification of analog and mixed signal designs. In: Conference on Signals, Circuits and Systems (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hendrik Roehm
    • 1
  • Jens Oehlerking
    • 1
  • Thomas Heinz
    • 1
  • Matthias Althoff
    • 2
  1. 1.Robert Bosch GmbH, Corporate ResearchRenningenGermany
  2. 2.Department of InformaticsTechnische Universität MünchenMunichGermany

Personalised recommendations