Greener Bits: Formal Analysis of Demand Response

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9938)

Abstract

Demand response is a promising approach to deal with the emerging power generation fluctuations introduced by the increasing amount of renewable energy sources fed into the grid. Consumers need to be able to adapt their energy consumption with respect to the given demand pattern and at the same time ensure that their adaptation (i.e., response) does not interfere with their various operational objectives. Finding, evaluating and verifying adaptation strategies which aim to be optimal w.r.t. multiple criteria is a challenging task and is currently mainly addressed by hand, heuristics or guided simulation. In this paper we carry out a case study of a demand response system with an energy adaptive data center on the consumer side for which we propose a formal model and perform a quantitative system analysis using probabilistic model checking. Our first contribution is a fine-grained formal model and the identification of significant properties and quantitative measures (e.g., expected energy consumption, average workload or total penalties for violating adaptation contracts) that are relevant for the data center as an adaptive consumer. The formal model can serve as a starting point for the application of different formal analysis methods. The second contribution is an evaluation of our approach using the prominent model checker PRISM. We report on the experimental results computing various functional properties and quantitative measures that yield important insights into the viability of given adaptation strategies and how to find close-to-optimal strategies.

References

  1. 1.
    Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quantiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–299. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear temporal logic: complexity and decidability. In: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 11:1–11:10. ACM (2014)Google Scholar
  4. 4.
    Baier, C., Klüppelholz, S., de Meer, H., Niedermeier, F., Wunderlich, S.: Greener bits: formal analysis of demand response. Technical report, TU Dresden (2016). http://www.tcs.inf.tu-dresden.de/ALGI/PUB/ATVA16/
  5. 5.
    Balijepalli, V., Pradhan, V., Khaparde, S., Shereef, R.: Review of demand response under smart grid paradigm. In: 2011 IEEE PES on Innovative Smart Grid Technologies-India (ISGT India), pp. 236–243. IEEE (2011)Google Scholar
  6. 6.
    Basmadjian, R., Lovasz, G., Beck, M., de Meer, H., Hesselbach-Serra, X., Botero, J., Klingert, S., Ortega, M.P., Lopez, J., Stam, A., van Krevelen, R., Girolamo, M.D.: A generic architecture for demand response: the ALL4Green approach. In: Proceedings of the 3rd International Conference on Cloud and Green Computing (CGC), pp. 464–471. IEEE (2013)Google Scholar
  7. 7.
    Basmadjian, R., Mueller, L., de Meer, H.: Data centres’ power profile selecting policies for demand response: insights of green supply demand agreement. Ad Hoc Netw. 25, 581–594 (2015)CrossRefGoogle Scholar
  8. 8.
    Boudec, J.L., Tomozei, D.-C.: Stability of a stochastic model for demand-response. Stoch. Syst. 3(1), 11–37 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chan, S., Schweppe, F.: A generation reallocation and load shedding algorithm. IEEE Trans. Power Appar. Syst. 1(PAS–98), 26–34 (1979)CrossRefGoogle Scholar
  10. 10.
    Chen, H., Coskun, A.K., Caramanis, M.C.: Real-time power control of data centers for providing regulation service. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 4314–4321 (2013)Google Scholar
  11. 11.
    Chen, N., Ren, X., Ren, S., Wierman, A.: Greening multi-tenant data center demand response. SIGMETRICS Perform. Eval. Rev. 43(2), 36–38 (2015)CrossRefGoogle Scholar
  12. 12.
    Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Family-based modeling and analysis for probabilistic systems – featuring ProFeat. In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 287–304. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7_17 CrossRefGoogle Scholar
  13. 13.
    David, A., Grunnet, J.D., Jessen, J.J., Larsen, K.G., Rasmussen, J.I.: Application of model-checking technology to controller synthesis. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS, vol. 6957, pp. 336–351. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.: Optimality analysis of energy-performance trade-off for server farm management. Perform. Eval. 67(11), 1155–1171 (2010)CrossRefGoogle Scholar
  16. 16.
    Huang, G.M., Nair, N.: An OPF based algorithm to evaluate load curtailment incorporating voltage stability margin criterion. In: Proceedings of NAPS Conference (2001)Google Scholar
  17. 17.
    Katoen, J.-P.: Model checking: one can do much more than you think!. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 1–14. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Kaur, H., Brar, Y.S., Randhawa, J.S.: Optimal power flow using power world simulator. In: Proceedings of the 2010 IEEE Electric Power and Energy Conference (EPEC), pp. 1–6 (2010)Google Scholar
  19. 19.
    Klein, J., Baier, C., Chrszon, P., Daum, M., Dubslaff, C., Klüppelholz, S., Märcker, S., Müller, D.: Advances in symbolic probabilistic model checking with PRISM. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 349–366. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9_20 CrossRefGoogle Scholar
  20. 20.
    Klingert, S., Niedermeier, F., Dupont, C., Giuliani, G., Schulze, T., de Meer, H.: Renewable energy-aware data centre operations for smart cities the DC4Cities approach. In: Proceedings of the International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), pp. 1–9 (2015)Google Scholar
  21. 21.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Liu, Z., Liu, I., Low, S., Wierman, A.: Pricing data center demand response. In: Proceedings of the 2014 ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 111–123 (2014)Google Scholar
  23. 23.
    Medicherla, T., Billinton, R., Sachdev, M.: Generation rescheduling and load shedding to alleviate line overloads-analysis. IEEE Trans. Power Appar. Syst. PAS–98(6), 1876–1884 (1979)CrossRefGoogle Scholar
  24. 24.
    Meidani, H., Ghanem, R.: Multiscale Markov models with random transitions for energy demand management. Energy Build. 61, 267–274 (2013)CrossRefGoogle Scholar
  25. 25.
    Niedermeier, F., Duschl, W., Möller, T., de Meer, H.: Increasing data centre renewable power share via intelligent smart city power control. In: Proceedings of the 2015 ACM International Conference on Future Energy Systems, pp. 241–246 (2015)Google Scholar
  26. 26.
    Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., Gupta, R.: Using probabilistic model checking for dynamic power management. Formal Aspects Comput. 17(2), 160–176 (2005)CrossRefMATHGoogle Scholar
  27. 27.
    Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)CrossRefMATHGoogle Scholar
  28. 28.
    Qureshi, A.: Power-demand routing in massive geo-distributed systems. Ph.D. thesis, Massachusetts Institute of Technology (2010)Google Scholar
  29. 29.
    Siano, P.: Demand response and smart grids—a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014)CrossRefGoogle Scholar
  30. 30.
    Zhou, Z., Liu, F., Li, B., Li, B., Jin, H., Zou, R., Liu, Z.: Fuel cell generation in geo-distributed cloud services: a quantitative study. In: Proceedings of the 34th International Conference on Distributed Computing Systems (ICDCS), pp. 52–61 (2014)Google Scholar
  31. 31.
    Zhou, Z., Liu, F., Li, Z.: Pricing bilateral electricity trade between smart grids and hybrid green datacenters. In: Proceedings of the 2015 ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 443–444. ACM (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.University of PassauPassauGermany

Personalised recommendations