Advertisement

Solving Mean-Payoff Games on the GPU

  • Philipp J. MeyerEmail author
  • Michael Luttenberger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9938)

Abstract

General purpose computation on graphics processing units (GPGPU) is a recent trend in areas which heavily depend on linear algebra, in particular solving large systems of linear equations. Many games, both qualitative (e.g. parity games) and quantitative (e.g. mean-payoff games) can be seen as systems of linear equations, too, albeit on more general algebraic structures. Building up on our GPU-based implementation of several solvers for parity games [8], we present in this paper a solver for mean-payoff games. Our implementation uses OpenCL which allows us to execute it without any changes on both the CPU and on the GPU allowing for direct comparison.

We evaluate our implementation on several benchmarks (obtained via reduction from parity games and optimization of controllers for hybrid systems [10]) where we obtain a speedup of up to 10 on the GPU in cases of MPGs with \(20\cdot 10^6\) nodes and \(60\cdot 10^6\) edges.

Keywords

Model Check Graphic Processing Unit Strategy Iteration Benchmark Suite Model Check Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Majid Zamani and Matthias Rungger for kindly providing the example for the hybrid controller for our experimental evaluation.

References

  1. 1.
    Barnat, J., Bauch, P., Brim, L., Ceska, M.: Designing fast LTL model checking algorithms for many-core GPUs. J. Parallel Distrib. Comput. 72(9), 1083–1097 (2012)CrossRefGoogle Scholar
  2. 2.
    Barnat, J., et al.: DiVinE 3.0 - an explicit-state model checker for multithreaded C & C++ programs. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification. LNCS, vol. 8044, pp. 863–868. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Björklund, H., Sandberg, S., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 673–685. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28629-5_52 CrossRefGoogle Scholar
  4. 4.
    Chatterjee, K., Majumdar, R.: Minimum attention controller synthesis for omega-regular objectives. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 145–159. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24310-3_11 CrossRefGoogle Scholar
  5. 5.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8(2), 109–113 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Friedmann, O., Lange, M.: The PGSolver collection of parity game solvers. University of Munich (2009). http://www2.tcs.ifi.lmu.de/pgsolver/
  7. 7.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1994)zbMATHGoogle Scholar
  8. 8.
    Hoffmann, P., Luttenberger, M.: Solving parity games on the GPU. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 455–459. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-02444-8_34 CrossRefGoogle Scholar
  9. 9.
    Keiren, J.J.A.: Benchmarks for parity games. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS, vol. 9392, pp. 127–142. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24644-4_9 CrossRefGoogle Scholar
  10. 10.
    Rungger, M., Zamani, M.: SCOTS: a tool for the synthesis of symbolic controllers. In: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, HSCC 2016, pp. 99–104. ACM, New York (2016)Google Scholar
  11. 11.
    Schewe, S., Trivedi, A., Varghese, T.: Symmetric strategy improvement. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 388–400. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47666-6_31 Google Scholar
  12. 12.
    Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000). doi: 10.1007/10722167_18 CrossRefGoogle Scholar
  13. 13.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institut für InformatikTechnische Universität MünchenMunichGermany

Personalised recommendations