Advertisement

Structure and Function of the Stressosome Signalling Hub

  • Jan Pané-Farré
  • Maureen B. Quin
  • Richard J. Lewis
  • Jon Marles-Wright
Part of the Subcellular Biochemistry book series (SCBI, volume 83)

Abstract

The stressosome is a multi-protein signal integration and transduction hub found in a wide range of bacterial species. The role that the stressosome plays in regulating the transcription of genes involved in the general stress response has been studied most extensively in the Gram-positive model organism Bacillus subtilis. The stressosome receives and relays the signal(s) that initiate a complex phosphorylation-dependent partner switching cascade, resulting in the activation of the alternative sigma factor σB. This sigma factor controls transcription of more than 150 genes involved in the general stress response. X-ray crystal structures of individual components of the stressosome and single-particle cryo-EM reconstructions of stressosome complexes, coupled with biochemical and single cell analyses, have permitted a detailed understanding of the dynamic signalling behaviour that arises from this multi-protein complex. Furthermore, bioinformatics analyses indicate that genetic modules encoding key stressosome proteins are found in a wide range of bacterial species, indicating an evolutionary advantage afforded by stressosome complexes. Interestingly, the genetic modules are associated with a variety of signalling modules encoding secondary messenger regulation systems, as well as classical two-component signal transduction systems, suggesting a diversification in function. In this chapter we review the current research into stressosome systems and discuss the functional implications of the unique structure of these signalling complexes.

Keywords

Stressosome Bacillus subtilis Phosphorylation Kinase SigmaB RsbR RsbS YtvA 

References

  1. Aertsen A, Michiels CW (2004) Stress and how bacteria cope with death and survival. Crit Rev Microbiol 30:263–273. doi: 10.1080/10408410490884757 CrossRefPubMedGoogle Scholar
  2. Akbar S, Gaidenko TA, Kang CM et al (2001) New family of regulators in the environmental signaling pathway which activates the general stress transcription factor σB of Bacillus subtilis. J Bacteriol 183:1329–1338. doi: 10.1128/JB.183.4.1329-1338.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alper S, Duncan L, Losick R (1994) An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77:195–205CrossRefPubMedGoogle Scholar
  4. Alper S, Dufour A, Garsin DA et al (1996) Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis. J Mol Biol 260:165–177. doi: 10.1006/jmbi.1996.0390 CrossRefPubMedGoogle Scholar
  5. Aravind L, Koonin EV (2000) The STAS domain – a link between anion transporters and antisigma-factor antagonists. Curr Biol 10:R53–R55CrossRefPubMedGoogle Scholar
  6. Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164. doi: 10.1146/annurev.biophys.27.1.133 CrossRefPubMedGoogle Scholar
  7. Benson AK, Haldenwang WG (1993) Bacillus subtilis σB is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci U S A 90:2330–2334Google Scholar
  8. Beuron F, Maurizi MR, Belnap DM et al (1998) At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J Struct Biol 123:248–259. doi: 10.1006/jsbi.1998.4039 CrossRefPubMedGoogle Scholar
  9. Bhate MP, Molnar KS, Goulian M, DeGrado WF (2015) Signal transduction in histidine kinases: insights from new structures. Structure 23:981–994. doi: 10.1016/j.str.2015.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brody MS, Vijay K, Price CW (2001) Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the σB transcription factor in Bacillus subtilis. J Bacteriol 183:6422–6428. doi: 10.1128/JB.183.21.6422-6428.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Campbell EA, Masuda S, Sun JL et al (2002) Crystal structure of the Bacillus stearothermophilus anti-sigma factor SpoIIAB with the sporulation sigma factor sigmaF. Cell 108:795–807. doi: 10.1016/S0092-8674(02)00662-1
  12. Capra EJ, Laub MT (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66:325–347. doi: 10.1146/annurev-micro-092611-150039 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chaturongakul S, Boor KJ (2004) RsbT and RsbV contribute to σB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl Environ Microbiol 70:5349–5356. doi: 10.1128/AEM.70.9.5349-5356.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chaturongakul S, Boor KJ (2006) σB activation under environmental and energy stress conditions in Listeria monocytogenes. Appl Environ Microbiol 72:5197–5203. doi: 10.1128/AEM.03058-05 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen C-CCC, Lewis RJRJ, Harris R et al (2003) A supramolecular complex in the environmental stress signalling pathway of Bacillus subtilis. Mol Microbiol 49:1657–1669. doi: 10.1046/j.1365-2958.2003.03663.x CrossRefPubMedGoogle Scholar
  16. Chen C-C, Yudkin MD, Delumeau O (2004) Phosphorylation and RsbX-dependent dephosphorylation of RsbR in the RsbR-RsbS complex of Bacillus subtilis. J Bacteriol 186:6830–6836. doi: 10.1128/JB.186.20.6830-6836.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen LC, Chen JC, Shu JC et al (2012) Interplay of RsbM and RsbK controls the σB activity of Bacillus cereus. Environ Microbiol 14:2788–2799. doi: 10.1111/j.1462-2920.2012.02788.x CrossRefPubMedGoogle Scholar
  18. Das AK, Helps NR, Cohen PT, Barford D (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 15:6798–6809PubMedPubMedCentralGoogle Scholar
  19. de Been M, Tempelaars MH, van Schaik W et al (2010) A novel hybrid kinase is essential for regulating the σB-mediated stress response of Bacillus cereus. Environ Microbiol 12:730–745. doi: 10.1111/j.1462-2920.2009.02116.x CrossRefPubMedGoogle Scholar
  20. de Been M, Francke C, Siezen RJ, Abee T (2011) Novel σB regulation modules of Gram-positive bacteria involve the use of complex hybrid histidine kinases. Microbiology 157:3–12. doi: 10.1099/mic.0.045740-0 CrossRefPubMedGoogle Scholar
  21. Delumeau O, Lewis RJ, Yudkin MD (2002) Protein-protein interactions that regulate the energy stress activation of σB in Bacillus subtilis. J Bacteriol 184:5583–5589. doi: 10.1128/JB.184.20.5583-5589.2002
  22. Delumeau O, Dutta S, Brigulla M et al (2004) Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C. J Biol Chem 279:40927–40937. doi: 10.1074/jbc.M405464200 CrossRefPubMedGoogle Scholar
  23. Delumeau O, Chen C-C, Murray JW et al (2006) High-molecular-weight complexes of RsbR and paralogues in the environmental signaling pathway of Bacillus subtilis. J Bacteriol 188:7885–7892. doi: 10.1128/JB.00892-06 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dube P, Tavares P, Lurz R, van Heel M (1993) The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J 12:1303–1309PubMedPubMedCentralGoogle Scholar
  25. Dufour A, Voelker U, Voelker A, Haldenwang WG (1996) Relative levels and fractionation properties of Bacillus subtilis σB and its regulators during balanced growth and stress. J Bacteriol 178:3701–3709CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28CrossRefPubMedGoogle Scholar
  27. Eymann C, Schulz S, Gronau K et al (2011) In vivo phosphorylation patterns of key stressosome proteins define a second feedback loop that limits activation of Bacillus subtilis σ(B). Mol Microbiol 80:798–810. doi: 10.1111/j.1365-2958.2011.07609.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gaidenko TA, Price CW (2014) Genetic evidence for a phosphorylation-independent signal transduction mechanism within the Bacillus subtilis stressosome. PLoS One 9:e90741. doi: 10.1371/journal.pone.0090741 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gaidenko TA, Yang X, Lee YM, Price CW (1999) Threonine phosphorylation of modulator protein RsbR governs its ability to regulate a serine kinase in the environmental stress signaling pathway of Bacillus subtilis. J Mol Biol 288:29–39. doi: 10.1006/jmbi.1999.2665 CrossRefPubMedGoogle Scholar
  30. Gaidenko TA, Bie X, Baldwin EP, Price CW (2011) Substitutions in the presumed sensing domain of the Bacillus subtilis stressosome affect its basal output but not response to environmental signals. J Bacteriol 193:3588–3597. doi: 10.1128/JB.00060-11 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gaidenko TA, Bie X, Baldwin EP, Price CW (2012) Two surfaces of a conserved interdomain linker differentially affect output from the RST sensing module of the Bacillus subtilis stressosome. J Bacteriol 194:3913–3921. doi: 10.1128/JB.00583-12 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154. doi: 10.1146/annurev.micro.091208.073214 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31:3320–3323. doi: 10.1093/nar/gkg556 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haldenwang WG, Losick R (1979) A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature 282:256–260CrossRefPubMedGoogle Scholar
  35. Hardwick SW, Pané-Farré J, Delumeau O et al (2007) Structural and functional characterization of partner switching regulating the environmental stress response in Bacillus subtilis. J Biol Chem 282:11562–11572. doi: 10.1074/jbc.M609733200 CrossRefPubMedGoogle Scholar
  36. Hecker M, Völker U (2001) General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91. doi: 10.1016/S0065-2911(01)44011-2 CrossRefPubMedGoogle Scholar
  37. Hecker M, Pané-Farré J, Völker U (2007) SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61:215–236. doi: 10.1146/annurev.micro.61.080706.093445 CrossRefPubMedGoogle Scholar
  38. Herrou J, Crosson S (2011) Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Microbiol 9:713–723. doi: 10.1038/nrmicro2622 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hou S, Larsen RW, Boudko D et al (2000) Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403:540–544. doi: 10.1038/35000570 CrossRefPubMedGoogle Scholar
  40. Jurk M, Dorn M, Kikhney A et al (2010) The switch that does not flip: the blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation state as revealed by a combined AUC and SAXS study. J Mol Biol 403:78–87. doi: 10.1016/j.jmb.2010.08.036 CrossRefPubMedGoogle Scholar
  41. Jurk M, Dorn M, Schmieder P (2011) Blue flickers of hope: secondary structure, dynamics, and putative dimerization interface of the blue-light receptor YtvA from Bacillus subtilis. Biochemistry 50:8163–8171. doi: 10.1021/bi200782j CrossRefPubMedGoogle Scholar
  42. Jurk M, Schramm P, Schmieder P (2013) The blue-light receptor YtvA from Bacillus subtilis is permanently incorporated into the stressosome independent of the illumination state. Biochem Biophys Res Commun 432:499–503. doi: 10.1016/j.bbrc.2013.02.025 CrossRefPubMedGoogle Scholar
  43. Kaneko T, Tanaka N, Kumasaka T (2005) Crystal structures of RsbQ, a stress-response regulator in Bacillus subtilis. Protein Sci 14:558–565. doi: 10.1110/ps.041170005 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kang CM, Brody MS, Akbar S et al (1996) Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor σB in response to environmental stress. J Bacteriol 178:3846–3853CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kang CM, Vijay K, Price CW (1998) Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase. Mol Microbiol 30:189–196CrossRefPubMedGoogle Scholar
  46. Kim T-J, Gaidenko TA, Price CW (2004a) In vivo phosphorylation of partner switching regulators correlates with stress transmission in the environmental signaling pathway of Bacillus subtilis. J Bacteriol 186:6124–6132. doi: 10.1128/JB.186.18.6124-6132.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kim T-J, Gaidenko TA, Price CW (2004b) A multicomponent protein complex mediates environmental stress signaling in Bacillus subtilis. J Mol Biol 341:135–150. doi: 10.1016/j.jmb.2004.05.043 CrossRefPubMedGoogle Scholar
  48. Kitanishi K, Kobayashi K, Uchida T et al (2011) Identification and functional and spectral characterization of a globin-coupled histidine kinase from Anaeromyxobacter sp. Fw109-5. J Biol Chem 286:35522–35534. doi: 10.1074/jbc.M111.274811 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kovacs H, Comfort D, Lord M et al (1998) Solution structure of SpoIIAA, a phosphorylatable component of the system that regulates transcription factor sigmaF of Bacillus subtilis. Proc Natl Acad Sci U S A 95:5067–5071CrossRefPubMedPubMedCentralGoogle Scholar
  50. Krell T, Lacal J, Busch A et al (2010) Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64:539–559. doi: 10.1146/annurev.micro.112408.134054 CrossRefPubMedGoogle Scholar
  51. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. doi: 10.1016/j.jmb.2007.05.022 CrossRefPubMedGoogle Scholar
  52. Kumar A, Lomize A, Jin KK et al (2010) Open and closed conformations of two SpoIIAA-like proteins (YP_749275.1 and YP_001095227.1) provide insights into membrane association and ligand binding. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1245–1253. doi: 10.1107/S1744309109042481 CrossRefPubMedGoogle Scholar
  53. Liebal UW, Millat T, Marles-wright J et al (2013) Simulations of stressosome activation emphasize allosteric interactions between RsbR and RsbT. BMC Syst Biol 7:3. doi: 10.1186/1752-0509-7-3 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Locke JCW, Young JW, Fontes M et al (2011) Stochastic pulse regulation in bacterial stress response. Science 334:366–369. doi: 10.1126/science.1208144 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lord M, Magnin T, Yudkin MD (1996) Protein conformational change and nucleotide binding involved in regulation of sigmaF in Bacillus subtilis. J Bacteriol 178:6730–6735CrossRefPubMedPubMedCentralGoogle Scholar
  56. Losi A, Polverini E, Quest B, Gärtner W (2002) First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys J 82:2627–2634. doi: 10.1016/S0006-3495(02)75604-X CrossRefPubMedPubMedCentralGoogle Scholar
  57. Losi A, Quest B, Gärtner W (2003) Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochem Photobiol Sci 2:759–766CrossRefPubMedGoogle Scholar
  58. Lowe EC, Baslé A, Czjzek M et al (2012) A scissor blade-like closing mechanism implicated in transmembrane signaling in a Bacteroides hybrid two-component system. Proc Natl Acad Sci U S A 109:1–6. doi: 10.1073/pnas.1200479109 CrossRefGoogle Scholar
  59. Marles-Wright J, Grant T, Delumeau O et al (2008) Molecular architecture of the “stressosome,” a signal integration and transduction hub. Science 322:92–96. doi: 10.1126/science.1159572 CrossRefPubMedGoogle Scholar
  60. Marri PR, Bannantine JP, Paustian ML, Golding GB (2006) Lateral gene transfer in Mycobacterium avium subspecies paratuberculosis. Can J Microbiol 52:560–569. doi: 10.1139/w06-001 CrossRefPubMedGoogle Scholar
  61. Martinez L, Reeves A, Haldenwang W (2010) Stressosomes formed in Bacillus subtilis from the RsbR protein of Listeria monocytogenes allow σB activation following exposure to either physical or nutritional stress. J Bacteriol 192:6279–6286. doi: 10.1128/JB.00467-10 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Masuda S, Murakami KS, Wang S et al (2004) Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA. J Mol Biol 340:941–956. doi: 10.1016/j.jmb.2004.05.040 CrossRefPubMedGoogle Scholar
  63. Mitchell JG, Kogure K (2006) Bacterial motility: links to the environment and a driving force for microbial physics. FEMS Microbiol Ecol 55:3–16CrossRefPubMedGoogle Scholar
  64. Möglich A, Moffat K (2007) Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. J Mol Biol 373:112–126. doi: 10.1016/j.jmb.2007.07.039 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Moran CP, Lang N, Banner CD et al (1981) Promoter for a developmentally regulated gene in Bacillus subtilis. Cell 25:783–791CrossRefPubMedGoogle Scholar
  66. Morrison SS, Williams T, Cain A et al (2012) Pyrosequencing-based comparative genome analysis of Vibrio vulnificus environmental isolates. PLoS One 7:e37553. doi: 10.1371/journal.pone.0037553 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Murray JW, Delumeau O, Lewis RJ (2005) Structure of a nonheme globin in environmental stress signaling. Proc Natl Acad Sci U S A 102:17320–17325. doi: 10.1073/pnas.0506599102 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Musa YR, Bäsell K, Schatschneider S, Vorhölter FJ, Becher D, Niehaus K (2013) Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach. J Biotechnol 167(2):111–122. doi:10.1016/j.jbiotec.2013.06.009. Epub 2013 Jun 20Google Scholar
  69. Nadezhdin EV, Brody MS, Price CW (2011) An α/β hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains. PLoS One 6:e25418. doi: 10.1371/journal.pone.0025418 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ondrusch N, Kreft J (2011) Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes. PLoS One 6:e16151. doi: 10.1371/journal.pone.0016151 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Österberg S, del Peso-Santos T, Shingler V (2011) Regulation of alternative sigma factor use. Annu Rev Microbiol 65:37–55. doi: 10.1146/annurev.micro.112408.134219 CrossRefPubMedGoogle Scholar
  72. Paget MS (2015) Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5:1245–1265. doi: 10.3390/biom5031245 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pané-Farré J, Lewis RJ, Stülke J et al (2005) The RsbRST stress module in bacteria: a signalling system that may interact with different output modules. J Mol Microbiol Biotechnol 9:65–76. doi: 10.1159/000088837 CrossRefPubMedGoogle Scholar
  74. Pané-Farré J, Jonas B, Hardwick SW et al (2009) Role of RsbU in controlling SigB activity in Staphylococcus aureus following alkaline stress. J Bacteriol 191:2561–2573. doi: 10.1128/JB.01514-08 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Petersohn A, Brigulla M, Haas S et al (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631. doi: 10.1128/JB.183.19.5617-5631.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Pettersson BMF, Nitharwal RG, Das S et al (2013) Identification and expression of stressosomal proteins in Mycobacterium marinum under various growth and stress conditions. FEMS Microbiol Lett 342:98–105. doi: 10.1111/1574-6968.12118 CrossRefPubMedGoogle Scholar
  77. Ponting CP, Aravind L (1997) PAS: a multifunctional domain family comes to light. Curr Biol 7:R674–R677CrossRefPubMedGoogle Scholar
  78. Price CW, Fawcett P, Cérémonie H et al (2001) Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41:757–774CrossRefPubMedGoogle Scholar
  79. Quin MB, Berrisford JM, Newman JA et al (2012) The bacterial stressosome: a modular system that has been adapted to control secondary messenger signaling. Structure 20:350–363. doi: 10.1016/j.str.2012.01.003 CrossRefPubMedGoogle Scholar
  80. Reeves A, Martinez L, Haldenwang W (2010) Expression of, and in vivo stressosome formation by, single members of the RsbR protein family in Bacillus subtilis. Microbiology 156:990–998. doi: 10.1099/mic.0.036095-0 CrossRefPubMedGoogle Scholar
  81. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52. doi: 10.1128/MMBR.00043-12 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ryan RP (2013) Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiology 159:1286–1297. doi: 10.1099/mic.0.068189-0 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Schaik Van W, Tempelaars MHMH, Zwietering MHMH et al (2005) Analysis of the role of RsbV, RsbW, and RsbY in regulating σB activity in Bacillus cereus. J Bacteriol 187:5846–5851. doi: 10.1128/JB.187.16.5846 CrossRefGoogle Scholar
  84. Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7:724–735. doi: 10.1038/nrmicro2203 CrossRefPubMedGoogle Scholar
  85. Schmalisch M, Langbein I, Stülke J (2002) The general stress protein Ctc of Bacillus subtilis is a ribosomal protein. J Mol Microbiol Biotechnol 4:495–501PubMedGoogle Scholar
  86. Seavers PR, Lewis RJ, Brannigan JA et al (2001) Structure of the Bacillus cell fate determinant SpoIIAA in phosphorylated and unphosphorylated forms. Structure 9:605–614CrossRefPubMedGoogle Scholar
  87. Sharma AK, Rigby AC, Alper SL (2011) STAS domain structure and function. Cell Physiol Biochem 28:407–422. doi: 10.1159/000335104 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215. doi: 10.1146/annurev.biochem.69.1.183
  89. Stranzl GR, Santelli E, Bankston LA et al (2011) Structural insights into inhibition of Bacillus anthracis sporulation by a novel class of non-heme globin sensor domains. J Biol Chem 286:8448–8458. doi: 10.1074/jbc.M110.207126 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Teh AH, Makino M, Hoshino T et al (2015) Structure of the RsbX phosphatase involved in the general stress response of Bacillus subtilis. Acta Crystallogr D Biol Crystallogr 71:1392–1399. doi: 10.1107/S1399004715007166 CrossRefPubMedGoogle Scholar
  91. Truitt CL, Weaver EA, Haldenwang WG (1988) Effects on growth and sporulation of inactivation of a Bacillus subtilis gene (ctc) transcribed in vitro by minor vegetative cell RNA polymerases (E-sigma 37, E-sigma 32). Mol Gen Genet 212:166–171CrossRefPubMedGoogle Scholar
  92. van der Steen JB, Hellingwerf KJ (2015) Activation of the general stress response of Bacillus subtilis by visible light. Photochem Photobiol 91:1032–1045. doi: 10.1111/php.12499 CrossRefPubMedGoogle Scholar
  93. van der Steen JB, Avila-Pérez M, Knippert D et al (2012) Differentiation of function among the RsbR paralogs in the general stress response of Bacillus subtilis with regard to light perception. J Bacteriol 194:1708–1716. doi: 10.1128/JB.06705-11 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Vijay K, Brody MS, Fredlund E, Price CW (2000) A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σB transcription factor of Bacillus subtilis. Mol Microbiol 35:180–188CrossRefPubMedGoogle Scholar
  95. Voelker U, Voelker A, Haldenwang WG (1996) Reactivation of the Bacillus subtilis anti-sigma B antagonist, RsbV, by stress- or starvation-induced phosphatase activities. J Bacteriol 178:5456–5463CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wang E, Bauer MC, Rogstam A et al (2008) Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Mol Microbiol 69:466–478. doi: 10.1111/j.1365-2958.2008.06295.x CrossRefPubMedGoogle Scholar
  97. Williams TC, Blackman ER, Morrison SS et al (2014) Transcriptome sequencing reveals the virulence and environmental genetic programs of Vibrio vulnificus exposed to host and estuarine conditions. PLoS One 9:e114376. doi: 10.1371/journal.pone.0114376 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wise AA, Price CW (1995) Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor σB in response to environmental signals. J Bacteriol 177:123–133CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yang X, Kang CM, Brody MS, Price CW (1996) Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev 10:2265–2275CrossRefPubMedGoogle Scholar
  100. Young JW, Locke JCW, Elowitz MB (2013) Rate of environmental change determines stress response specificity. Proc Natl Acad Sci U S A 110:4140–4145. doi: 10.1073/pnas.1213060110 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhang W, Phillips GN (2003) Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry. Structure 11:1097–1110CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jan Pané-Farré
    • 1
  • Maureen B. Quin
    • 2
  • Richard J. Lewis
    • 3
  • Jon Marles-Wright
    • 4
  1. 1.Division of Microbial Physiology and Molecular BiologyUniversity of GreifswaldGreifswaldGermany
  2. 2.Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulUSA
  3. 3.Institute for Cell and Molecular Biosciences, Faculty of Medical SciencesUniversity of NewcastleNewcastle upon TyneUK
  4. 4.School of BiologyNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations