Multi-label Active Learning Based on Maximum Correntropy Criterion: Towards Robust and Discriminative Labeling

  • Zengmao Wang
  • Bo Du
  • Lefei Zhang
  • Liangpei Zhang
  • Meng Fang
  • Dacheng Tao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9907)

Abstract

Multi-label learning is a challenging problem in computer vision field. In this paper, we propose a novel active learning approach to reduce the annotation costs greatly for multi-label classification. State-of-the-art active learning methods either annotate all the relevant samples without diagnosing discriminative information in the labels or annotate only limited discriminative samples manually, that has weak immunity for the outlier labels. To overcome these problems, we propose a multi-label active learning method based on Maximum Correntropy Criterion (MCC) by merging uncertainty and representativeness. We use the the labels of labeled data and the prediction labels of unknown data to enhance the uncertainty and representativeness measurement by merging strategy, and use the MCC to alleviate the influence of outlier labels for discriminative labeling. Experiments on several challenging benchmark multi-label datasets show the superior performance of our proposed method to the state-of-the-art methods.

Keywords

Multi-label learning Active learning Correntropy Robust 

Notes

Acknowledgements

This work was supported in part by the National Basic Research Program of China (973 Program) under Grant 2012CB719905, the National Natural Science Foundation of China under Grants 61471274, 41431175, 61401317, U1536204, 60473023, 61302111, and the Australian Research Council Projects DP-140102164, FT-130101457, and LE140100061.

References

  1. 1.
    Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 329–344. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10584-0_22 Google Scholar
  2. 2.
    Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural Parallel Sci. Comput. 11(4), 351–368 (2003)MathSciNetMATHGoogle Scholar
  3. 3.
    Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Chakraborty, S., Balasubramanian, V., Sun, Q., Panchanathan, S., Ye, J.: Active batch selection via convex relaxations with guaranteed solution bounds. TPAMI 37(10), 1945–1958 (2015)CrossRefGoogle Scholar
  6. 6.
    Chen, X., Shrivastava, A., Gupta, A.: Neil: extracting visual knowledge from web data. In: CVPR, pp. 1409–1416 (2013)Google Scholar
  7. 7.
    Chen, Y., Krause, A.: Near-optimal batch mode active learning and adaptive submodular optimization. In: CVPR, pp. 160–168 (2013)Google Scholar
  8. 8.
    Elhamifar, E., Sapiro, G., Yang, A., Sasrty, S.: A convex optimization framework for active learning. In: ICCV, pp. 209–216 (2013)Google Scholar
  9. 9.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. JMLR 9, 1871–1874 (2008)MATHGoogle Scholar
  10. 10.
    Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: active learning with expected model output changes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 562–577. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10593-2_37 Google Scholar
  11. 11.
    He, R., Tan, T., Wang, L., Zheng, W.S.: \(l_{2,1}\) regularized correntropy for robust feature selection. In: CVPR, pp. 2504–2511. IEEE (2012)Google Scholar
  12. 12.
    He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. CVPR 33(8), 1561–1576 (2011)Google Scholar
  13. 13.
    He, R., Zheng, W.S., Tan, T., Sun, Z.: Half-quadratic-based iterative minimization for robust sparse representation. TPAMI 36(2), 261–275 (2014)CrossRefGoogle Scholar
  14. 14.
    Huang, S.J., Chen, S., Zhou, Z.H.: Multi-label active learning: query type matters. In: IJCAI, pp. 946–952. AAAI Press (2015)Google Scholar
  15. 15.
    Huang, S.J., Jin, R., Zhou, Z.H.: Active learning by querying informative and representative examples. TPAMI 36(10), 1936–1949 (2014)CrossRefGoogle Scholar
  16. 16.
    Huang, S.J., Zhou, Z.H.: Active query driven by uncertainty and diversity for incremental multi-label learning. In: ICDM, pp. 1079–1084. IEEE (2013)Google Scholar
  17. 17.
    Jing, L., Yang, L., Yu, J., Ng, M.K.: Semi-supervised low-rank mapping learning for multi-label classification. In: CVPR, June 2015Google Scholar
  18. 18.
    Kading, C., Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Active learning and discovery of object categories in the presence of unnameable instances. In: CVPR, pp. 4343–4352. IEEE (2015)Google Scholar
  19. 19.
    Li, X.X., Dai, D.Q., Zhang, X.F., Ren, C.X.: Structured sparse error coding for face recognition with occlusion. TIP 22(5), 1889–1900 (2013)MathSciNetGoogle Scholar
  20. 20.
    Li, X., Guo, Y.: Active learning with multi-label SVM classification. In: IJCAI. Citeseer (2013)Google Scholar
  21. 21.
    Li, X., Guo, Y.: Multi-level adaptive active learning for scene classification. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 234–249. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10584-0_16 Google Scholar
  22. 22.
    Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_3 CrossRefGoogle Scholar
  23. 23.
    Liu, T., Tao, D.: Classification with noisy labels by importance reweighting. TPAMI 38(3), 447–461 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu, T., Tao, D., Song, M., Maybank, S.J.: Algorithm-dependent generalization bounds for multi-task learning. TPAMI (2016). doi:10.1109/TPAMI.2016.2544314 Google Scholar
  25. 25.
    Long, C., Hua, G.: Multi-class multi-annotator active learning with robust gaussian process for visual recognition. In: ICCV, December 2015Google Scholar
  26. 26.
    Mac Aodha, O., Campbell, N., Kautz, J., Brostow, G.: Hierarchical subquery evaluation for active learning on a graph. In: CVPR, pp. 564–571 (2014)Google Scholar
  27. 27.
    Qian, J., Yang, J., Zhang, F., Lin, Z.: Robust low-rank regularized regression for face recognition with occlusion. In: CVPRW, pp. 21–26 (2014)Google Scholar
  28. 28.
    Settles, B.: Active learning literature survey. University of Wisconsin, Madison, vol. 52, no. 55–66, p. 11 (2010)Google Scholar
  29. 29.
    Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Singh, G., Kosecka, J.: Nonparametric scene parsing with adaptive feature relevance and semantic context. In: CVPR, pp. 3151–3157 (2013)Google Scholar
  31. 31.
    Singh, M., Curran, E., Cunningham, P.: Active learning for multi-label image annotation. In: ICAIC, pp. 173–182 (2009)Google Scholar
  32. 32.
    Tao, D., Li, X., Xindong, W., Maybank, S.: General tensor discriminant analysis and gabor features for gait recognition. TPAMI 29(10), 1700–1715 (2007)CrossRefGoogle Scholar
  33. 33.
    Tao, D., Li, X., Xindong, W., Maybank, S.: Geometric mean for subspace selection. TPAMI 31(2), 260–274 (2009)CrossRefGoogle Scholar
  34. 34.
    Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. TPAMI 28(7), 1088–1099 (2006)CrossRefGoogle Scholar
  35. 35.
    Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: training object detectors with crawled data and crowds. IJCV 108(1–2), 97–114 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Xiong, X., Torre, F.: Supervised descent method and its applications to face alignment. In: CVPR, pp. 532–539 (2013)Google Scholar
  37. 37.
    Xu, C., Tao, D., Xu, C.: Multi-view intact space learning. TPAMI 37(12), 2531–2544 (2015)CrossRefGoogle Scholar
  38. 38.
    Yan, R., Yang, J., Hauptmann, A.: Automatically labeling video data using multi-class active learning. In: CVPR, pp. 516–523. IEEE (2003)Google Scholar
  39. 39.
    Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learning by uncertainty sampling with diversity maximization. IJCV 113(2), 113–127 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yuan, X.T., Hu, B.G.: Robust feature extraction via information theoretic learning. In: ICML. ACM (2009)Google Scholar
  41. 41.
    Zha, Z.J., Wang, M., Zheng, Y.T., Yang, Y., Hong, R., Chua, T.S.: Interactive video indexing with statistical active learning. TMM 14(1), 17–27 (2012)Google Scholar
  42. 42.
    Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for multi-label image retrieval. In: CVPR, June 2015Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Zengmao Wang
    • 1
  • Bo Du
    • 1
  • Lefei Zhang
    • 1
  • Liangpei Zhang
    • 2
  • Meng Fang
    • 3
  • Dacheng Tao
    • 4
  1. 1.State Key Laboratory of Software Engineering, School of ComputerWuhan UniversityWuhanChina
  2. 2.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina
  3. 3.Department of Computing and Information SystemsUniversity of MelbourneParkvilleAustralia
  4. 4.QCIS and FEITUniversity of Technology SydneySydneyAustralia

Personalised recommendations