Advertisement

SEAGULL: Seam-Guided Local Alignment for Parallax-Tolerant Image Stitching

  • Kaimo LinEmail author
  • Nianjuan Jiang
  • Loong-Fah Cheong
  • Minh Do
  • Jiangbo Lu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9907)

Abstract

Image stitching with large parallax is a challenging problem. Global alignment usually introduces noticeable artifacts. A common strategy is to perform partial alignment to facilitate the search for a good seam for stitching. Different from existing approaches where the seam estimation process is performed sequentially after alignment, we explicitly use the estimated seam to guide the process of optimizing local alignment so that the seam quality gets improved over each iteration. Furthermore, a novel structure-preserving warping method is introduced to preserve salient curve and line structures during the warping. These measures substantially improve the effectiveness of our method in dealing with a wide range of challenging images with large parallax.

Keywords

Target Image Feature Match Mesh Vertex Warping Model Image Stitching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Singapore PSF grant 1321202075 and the HCCS research grant at the ADSC from Singapore’s Agency for Science, Technology and Research (A*STAR) (This work was partly done when Kaimo was interning in ADSC.).

Supplementary material

419975_1_En_23_MOESM1_ESM.pdf (30.4 mb)
Supplementary material 1 (pdf 31173 KB)

References

  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M.: Interactive digital photomontage. ACM Trans. Graph. 23(3), 294–302 (2004)CrossRefGoogle Scholar
  3. 3.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. (IJCV) 74(1), 59–73 (2007)CrossRefGoogle Scholar
  4. 4.
    Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2(4), 217–236 (1983)CrossRefGoogle Scholar
  5. 5.
    Carroll, R., Agarwala, A., Agrawala, M.: Image warps for artistic perspective manipulation. ACM Trans. Graph. 29(4), 127:1–127:9 (2010)CrossRefGoogle Scholar
  6. 6.
    Chang, C.H., Sato, Y., Chuang, Y.Y.: Shape-preserving half-projective warps for image stitching. In: Proceedings of CVPR (2014)Google Scholar
  7. 7.
    Chang, C.H., Chuang, Y.Y.: A line-structure-preserving approach to image resizing. In: Proceedings of CVPR, pp. 1075–1082 (2012)Google Scholar
  8. 8.
    Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D., Lischinski, D.: Coordinates for instant image cloning. ACM Trans. Graph. 28(3), 67:1–67:9 (2009)CrossRefGoogle Scholar
  9. 9.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gao, J., Kim, S.J., Brown, M.S.: Constructing image panoramas using dual-homography warping. In: Proceedings of CVPR (2011)Google Scholar
  11. 11.
    Gao, J., Li, Y., Chin, T.J., Brown, M.S.: Seam-driven image stitching. In: Eurographics, pp. 45–48 (2013)Google Scholar
  12. 12.
    von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)CrossRefGoogle Scholar
  13. 13.
    He, K., Chang, H., Sun, J.: Rectangling panoramic images via warping. ACM Trans. Graph. 32(4), 79:1–79:10 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Krähenbühl, P., Lang, M., Hornung, A., Gross, M.: A system for retargeting of streaming video. ACM Trans. Graph. 28(5), 126:1–126:10 (2009)CrossRefGoogle Scholar
  15. 15.
    Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. 22(3), 277–286 (2003)CrossRefGoogle Scholar
  16. 16.
    Li, S., Yuan, L., Sun, J., Quan, L.: Dual-feature warping-based motion model estimation. In: Proceedings of ICCV, pp. 4283–4291 (2015)Google Scholar
  17. 17.
    Lin, C.C., Pankanti, S.U., Ramamurthy, K.N., Aravkin, A.Y.: Adaptive as-natural-as-possible image stitching. In: Proceedings of CVPR (2015)Google Scholar
  18. 18.
    Lin, K., Liu, S., Cheong, L.F., Zeng, B.: Seamless video stitching with hand-held camera inputs. Comput. Graph. Forum 35(2), 479–487 (2016)CrossRefGoogle Scholar
  19. 19.
    Lin, W.Y., Liu, S., Matsushita, Y., Ng, T.T., Cheong, L.F.: Smoothly varying affine stitching. In: Proceedings of CVPR (2011)Google Scholar
  20. 20.
    Liu, F., Gleicher, M., Jin, H., Agarwala, A.: Content-preserving warps for 3D video stabilization. ACM Trans. Graph. (Proc. SIGGRAPH) 28(3), 44:1–44:9 (2009)Google Scholar
  21. 21.
    Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for video stabilization. ACM Trans. Graph. (TOG) 32(4), 78:1–78:10 (2013)Google Scholar
  22. 22.
    Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends. Comput. Graph. Vis. 2(1), 1–104 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Szeliski, R., Shum, H.-Y.: Creating full view panoramic image mosaics and environment maps. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1997, pp. 251–258 (1997)Google Scholar
  24. 24.
    Wu, C.: SiftGPU: a GPU implementation of scale invariant feature transform (SIFT) (2007). http://cs.unc.edu/ccwu/siftgpu
  25. 25.
    Zaragoza, J., Chin, T.J., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving DLT. In: Proceedings of CVPR (2013)Google Scholar
  26. 26.
    Zhang, F., Liu, F.: Parallax-tolerant image stitching. In: Proceedings of CVPR (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kaimo Lin
    • 1
    • 2
    Email author
  • Nianjuan Jiang
    • 2
  • Loong-Fah Cheong
    • 1
  • Minh Do
    • 2
  • Jiangbo Lu
    • 2
  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.Advanced Digital Sciences CenterSingaporeSingapore

Personalised recommendations