On Volumetric Shape Reconstruction from Implicit Forms

  • Li WangEmail author
  • Franck Hétroy-Wheeler
  • Edmond Boyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9907)


In this paper we report on the evaluation of volumetric shape reconstruction methods that consider as input implicit forms in 3D. Many visual applications build implicit representations of shapes that are converted into explicit shape representations using geometric tools such as the Marching Cubes algorithm. This is the case with image based reconstructions that produce point clouds from which implicit functions are computed, with for instance a Poisson reconstruction approach. While the Marching Cubes method is a versatile solution with proven efficiency, alternative solutions exist with different and complementary properties that are of interest for shape modeling. In this paper, we propose a novel strategy that builds on Centroidal Voronoi Tessellations (CVTs). These tessellations provide volumetric and surface representations with strong regularities in addition to provably more accurate approximations of the implicit forms considered. In order to compare the existing strategies, we present an extensive evaluation that analyzes various properties of the main strategies for implicit to explicit volumetric conversions: Marching cubes, Delaunay refinement and CVTs, including accuracy and shape quality of the resulting shape mesh.


Point Cloud Voronoi Cell Implicit Representation Voronoi Tessellation Implicit Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allain, B., Franco, J.S., Boyer, E.: An efficient volumetric framework for shape tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 268–276. IEEE (2015)Google Scholar
  2. 2.
    Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral meshing. In: ACM Transactions on Graphics (TOG), vol. 24, pp. 617–625. ACM (2005)Google Scholar
  3. 3.
    de Araujo, B., Lopes, D.S., Jepp, P., Jorge, J.A., Wyvill, B.: A survey on implicit surface polygonization. ACM Comput. Surv. (CSUR) 47(4), 60 (2015)CrossRefGoogle Scholar
  4. 4.
    Berger, M., Levine, J.A., Nonato, L.G., Taubin, G., Silva, C.T.: A benchmark for surface reconstruction. ACM Trans. Graph. (TOG) 32(2), 20 (2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    Boissonnat, J.D., Oudot, S.: Provably good sampling and meshing of surfaces. Graph. Models 67(5), 405–451 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Carr, H., Theußl, T., Möller, T.: Isosurfaces on optimal regular samples. In: ACM International Conference Proceeding Series, vol. 40, pp. 39–48. Citeseer (2003)Google Scholar
  7. 7.
    CGAL: Computational Geometry Algorithms Library.
  8. 8.
    Chan, S.L., Purisima, E.O.: A new tetrahedral tesselation scheme for isosurface generation. Comput. Graph. 22(1), 83–90 (1998)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3d mesh segmentation. In: ACM Transactions on Graphics (TOG), vol. 28, p. 73. ACM (2009)Google Scholar
  10. 10.
    Cheng, S.W., Dey, T.K., Edelsbrunner, H., Facello, M.A., Teng, S.H.: Silver exudation. J. ACM (JACM) 47(5), 883–904 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cheng, S.W., Dey, T.K., Ramos, E.A.: Delaunay refinement for piecewise smooth complexes. Discrete Comput. Geom. 43(1), 121–166 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. In: Computer Graphics Forum, vol. 17, pp. 167–174. Wiley Online Library (1998)Google Scholar
  13. 13.
    Conway, J., Sloane, N.: Voronoi regions of lattices, second moments of polytopes, and quantization. IEEE Trans. Inf. Theor. 28(2), 211–226 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Esteban, C.H., Schmitt, F.: Silhouette and stereo fusion for 3d object modeling. Comput. Vis. Image Underst. 96(3), 367–392 (2004)CrossRefGoogle Scholar
  16. 16.
    Field, D.A.: Qualitative measures for initial meshes. Int. J. Numer. Meth. Eng. 47(4), 887–906 (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Fuhrmann, S., Kazhdan, M., Goesele, M.: Accurate isosurface interpolation with hermite data. In: 2015 International Conference on 3D Vision (3DV), pp. 256–263. IEEE (2015)Google Scholar
  18. 18.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  19. 19.
    Huang, C.H., Allain, B., Franco, J.S., Navab, N., Ilic, S., Boyer, E.: Volumetric 3d tracking by detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2016)Google Scholar
  20. 20.
    Jamin, C., Alliez, P., Yvinec, M., Boissonnat, J.D.: Cgalmesh: a generic framework for delaunay mesh generation. ACM Trans. Math. Softw. (TOMS) 41(4), 23 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kazhdan, M., Klein, A., Dalal, K., Hoppe, H.: Unconstrained isosurface extraction on arbitrary octrees. In: Symposium on Geometry Processing, vol. 7, pp. 256–263 (2007)Google Scholar
  22. 22.
    Knupp, P.M.: Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23(1), 193–218 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.P.: Feature sensitive surface extraction from volume data. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 57–66. ACM (2001)Google Scholar
  24. 24.
    Labatut, P., Pons, J.P., Keriven, R.: Robust and efficient surface reconstruction from range data. In: Computer Graphics Forum, vol. 28, pp. 2275–2290. Wiley Online Library (2009)Google Scholar
  25. 25.
    Labelle, F., Shewchuk, J.R.: Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. In: ACM Transactions on Graphics (TOG), vol. 26, p. 57. ACM (2007)Google Scholar
  26. 26.
    Lempitsky, V.: Surface extraction from binary volumes with higher-order smoothness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1197–1204. IEEE (2010)Google Scholar
  27. 27.
    Lévy, B.: Restricted voronoi diagrams for (re)-meshing surfaces and volumes. In: 8th International Conference on Curves and Surfaces, vol. 6, p. 14 (2014)Google Scholar
  28. 28.
    Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8(2), 1–15 (2003)CrossRefGoogle Scholar
  29. 29.
    Lhuillier, M.: 2-manifold tests for 3d delaunay triangulation-based surface reconstruction. J. Math. Imag. Vis. 51(1), 98–105 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.M., Lu, L., Yang, C.: On centroidal voronoi tessellation energy smoothness and fast computation. ACM Trans. Graph. (ToG) 28(4), 101 (2009)CrossRefGoogle Scholar
  31. 31.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: ACM Siggraph Computer Graphics, vol. 21, pp. 163–169. ACM (1987)Google Scholar
  32. 32.
    Meyer, M., Kirby, R.M., Whitaker, R.: Topology, accuracy, and quality of isosurface meshes using dynamic particles. IEEE Trans. Vis. Comput. Graph. 13(6), 1704–1711 (2007)CrossRefGoogle Scholar
  33. 33.
    Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Comput. Graph. 30(5), 854–879 (2006)CrossRefGoogle Scholar
  34. 34.
    Oudot, S.Y.: On the topology of the restricted delaunay triangulation and witness complex in higher dimensions. arXiv preprint arXiv:0803.1296 (2008)
  35. 35.
    Pons, J.P., Boissonnat, J.D.: Delaunay deformable models: topology-adaptive meshes based on the restricted delaunay triangulation. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)Google Scholar
  36. 36.
    Shewchuk, J.R.: Tetrahedral mesh generation by delaunay refinement. In: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, pp. 86–95. ACM (1998)Google Scholar
  37. 37.
    Sinha, S.N., Mordohai, P., Pollefeys, M.: Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)Google Scholar
  38. 38.
    Tournois, J., Wormser, C., Alliez, P., Desbrun, M.: Interleaving delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Trans. Graph. 28(3), 75:1–75:9 (2009)CrossRefGoogle Scholar
  39. 39.
    Wang, L., Hétroy-Wheeler, F., Boyer, E.: A hierarchical approach for regular centroidal voronoi tessellations. In: Computer Graphics Forum, vol. 35, pp. 152–165. Wiley Online Library (2016)Google Scholar
  40. 40.
    Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920. IEEE (2015)Google Scholar
  41. 41.
    Yan, D.M., Wang, W., Lévy, B., Liu, Y.: Efficient computation of clipped voronoi diagram for mesh generation. Comput. Aided Des. 45(4), 843–852 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes & Inria & CNRS, LJKGrenobleFrance

Personalised recommendations