Advertisement

Human Pose Estimation via Convolutional Part Heatmap Regression

  • Adrian BulatEmail author
  • Georgios Tzimiropoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9911)

Abstract

This paper is on human pose estimation using Convolutional Neural Networks. Our main contribution is a CNN cascaded architecture specifically designed for learning part relationships and spatial context, and robustly inferring pose even for the case of severe part occlusions. To this end, we propose a detection-followed-by-regression CNN cascade. The first part of our cascade outputs part detection heatmaps and the second part performs regression on these heatmaps. The benefits of the proposed architecture are multi-fold: It guides the network where to focus in the image and effectively encodes part constraints and context. More importantly, it can effectively cope with occlusions because part detection heatmaps for occluded parts provide low confidence scores which subsequently guide the regression part of our network to rely on contextual information in order to predict the location of these parts. Additionally, we show that the proposed cascade is flexible enough to readily allow the integration of various CNN architectures for both detection and regression, including recent ones based on residual learning. Finally, we illustrate that our cascade achieves top performance on the MPII and LSP data sets. Code can be downloaded from http://www.cs.nott.ac.uk/~psxab5/.

Keywords

Human pose estimation Part heatmap regression Convolutional Neural Networks 

Notes

Acknowledgement

We would like to thank Leonid Pishchulin for graciously producing our results on MPII with unprecedented quickness.

References

  1. 1.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. IJCV 61(1), 55–79 (2005)CrossRefGoogle Scholar
  2. 2.
    Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: CVPR (2011)Google Scholar
  3. 3.
    Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.: Poselet conditioned pictorial structures. In: CVPR (2013)Google Scholar
  4. 4.
    Tian, Y., Zitnick, C.L., Narasimhan, S.G.: Exploring the spatial hierarchy of mix-ture models for human pose estimation. In: ECCV (2012)Google Scholar
  5. 5.
    Sapp, B., Taskar, B.: Modec: Multimodal decomposable models for human pose estimation. In: CVPR (2013)Google Scholar
  6. 6.
    Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.: Strong appearance and expressive spatial models for human pose estimation. In: CVPR (2013)Google Scholar
  7. 7.
    Karlinsky, L., Ullman, S.: Using linking features in learning non-parametric partmodels. In: ECCV (2012)Google Scholar
  8. 8.
    Dantone, M., Gall, J., Leistner, C., Gool, L.: Human pose estimation using body parts dependent joint regressors. In: CVPR (2013)Google Scholar
  9. 9.
    Ramakrishna, V., Munoz, D., Hebert, M., Bagnell, J.A., Sheikh, Y.: Pose machines: articulated pose estimation via inference machines. In: ECCV (2014)Google Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)Google Scholar
  11. 11.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  12. 12.
    Girshick, R.: Fast R-CNN. In: ICCV (2015)Google Scholar
  13. 13.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)Google Scholar
  14. 14.
    Toshev, A., Szegedy, C.: DeepPose: Human pose estimation via deep neural networks. In: CVPR (2014)Google Scholar
  15. 15.
    Pfister, T., Simonyan, K., Charles, J., Zisserman, A.: Deep convolutional neural networks for efficient pose estimation ingesture videos. In: ACCV (2014)Google Scholar
  16. 16.
    Pfister, T., Charles, J., Zisserman, A.: Flowing convnets for human pose estimation in videos. In: ICCV (2015)Google Scholar
  17. 17.
    Belagiannis, V., Rupprecht, C., Carneiro, G., Navab, N.: Robust optimization for deep regression. In: ICCV (2015)Google Scholar
  18. 18.
    Zhang, N., Shelhamer, E., Gao, Y., Darrell, T.: Fine-grained pose prediction, normalization, and recognition. arXiv preprint arXiv:1511.07063 (2015)
  19. 19.
    Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. arXiv preprint arXiv:1603.06937 (2016)
  20. 20.
    Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR (2014)Google Scholar
  21. 21.
    Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: BMVC (2010)Google Scholar
  22. 22.
    Chen, X., Yuille, A.L.: Articulated pose estimation by a graphical model with image dependent pairwise relations. In: NIPS (2014)Google Scholar
  23. 23.
    Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: NIPS (2014)Google Scholar
  24. 24.
    Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: CVPR (2015)Google Scholar
  25. 25.
    Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P., Schiele, B.: DeepCut: Joint subset partition and labeling for multi person pose estimation. In: CVPR (2015)Google Scholar
  26. 26.
    Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. arXiv preprint arXiv:1605.03170 (2016)
  27. 27.
    Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. arXiv preprint arXiv:1507.06550 (2015)
  28. 28.
    Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR (2016)Google Scholar
  29. 29.
    Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 International Conference on Computer Vision, pp. 2018–2025. IEEE (2011)Google Scholar
  30. 30.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)Google Scholar
  31. 31.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
  32. 32.
    Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for machine learning. In: BigLearn, NIPS Workshop, Number EPFL-CONF-192376 (2011)Google Scholar
  33. 33.
    Wu, Z., Shen, C., Hengel, A.V.D.: High-performance semantic segmentation using very deep fully convolutional networks. arXiv preprint arXiv:1604.04339 (2016)
  34. 34.
    Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. arXiv preprint arXiv:1605.06409 (2016)
  35. 35.
    Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2) (2012)Google Scholar
  36. 36.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027 (2016)
  37. 37.
    Gkioxari, G., Toshev, A., Jaitly, N.: Chained predictions using convolutional neural networks. arXiv preprint arXiv:1605.02346 (2016)
  38. 38.
    Lifshitz, I., Fetaya, E., Ullman, S.: Human pose estimation using deep consensus voting. arXiv preprint arXiv:1603.08212 (2016)
  39. 39.
    Hu, P., Ramanan, D.: Bottom-up and top-down reasoning with convolutional latent-variable models. arXiv preprint arXiv:1507.05699 (2015)
  40. 40.
    Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. arXiv preprint arXiv:1507.06550 (2015)
  41. 41.
    Yang, W., Ouyang, W., Li, H., Wang, X.: End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In: CVPR (2016)Google Scholar
  42. 42.
    Fan, X., Zheng, K., Lin, Y., Wang, S.: Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation. In: CVPR (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Computer Vision LaboratoryUniversity of NottinghamNottinghamUK

Personalised recommendations