SurfCut: Free-Boundary Surface Extraction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9911)


We present SurfCut, an algorithm for extracting a smooth simple surface with unknown boundary from a noisy 3D image and a seed point. In contrast to existing approaches that extract smooth simple surfaces with boundary, our method requires less user input, i.e., a seed point, rather than a 3D boundary curve. Our method is built on the novel observation that certain ridge curves of a front propagated using the Fast Marching algorithm are likely to lie on the surface. Using the framework of cubical complexes, we design a novel algorithm to robustly extract such ridge curves and form the surface of interest. Our algorithm automatically cuts these ridge curves to form the surface boundary, and then extracts the surface. Experiments show the robustness of our method to errors in the data, and that we achieve higher accuracy with lower computational cost than comparable methods.


Segmentation Surface extraction Fast Marching methods Minimal path methods Cubicle complexes 



This work was supported by KAUST OCRF-2014-CRG3-62140401, and the Visual Computing Center at KAUST.

Supplementary material

Supplementary material 1 (mp4 4595 KB)

419982_1_En_11_MOESM2_ESM.mp4 (4.2 mb)
Supplementary material 2 (mp4 4335 KB)

Supplementary material 3 (mp4 12191 KB)

419982_1_En_11_MOESM4_ESM.pdf (177 kb)
Supplementary material 4 (pdf 176 KB)


  1. 1.
    Schultz, T., Theisel, H., Seidel, H.P.: Crease surfaces: from theory to extraction and application to diffusion tensor MRI. IEEE Trans. Vis. Comput. Graph. 16(1), 109–119 (2010)CrossRefGoogle Scholar
  2. 2.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)CrossRefGoogle Scholar
  3. 3.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Kaul, V., Yezzi, A., Tsai, Y.: Detecting curves with unknown endpoints and arbitrary topology using minimal paths. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1952–1965 (2012)CrossRefGoogle Scholar
  5. 5.
    Mille, J., Bougleux, S., Cohen, L.D.: Combination of piecewise-geodesic paths for interactive segmentation. Int. J. Comput. Vis. 112(1), 1–22 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Benmansour, F., Cohen, L.D.: From a single point to a surface patch by growing minimal paths. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 648–659. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02256-2_54 CrossRefGoogle Scholar
  7. 7.
    Ardon, R., Cohen, L.D., Yezzi, A.: A new implicit method for surface segmentation by minimal paths: applications in 3D medical images. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 520–535. Springer, Heidelberg (2005). doi: 10.1007/11585978_34 CrossRefGoogle Scholar
  8. 8.
    Grady, L.: Minimal surfaces extend shortest path segmentation methods to 3D. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 321–334 (2010)CrossRefGoogle Scholar
  9. 9.
    Hale, D., et al.: Fault surfaces and fault throws from 3D seismic images. In: 2012 SEG Annual Meeting, Society of Exploration Geophysicists (2012)Google Scholar
  10. 10.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefMATHGoogle Scholar
  11. 11.
    Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16(2), 199–209 (1997)CrossRefGoogle Scholar
  12. 12.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefMATHGoogle Scholar
  13. 13.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88690-7_59 CrossRefGoogle Scholar
  15. 15.
    Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: Eighth IEEE International Conference on Computer Vision, ICCV 2001, Proceedings, vol. 1, pp. 105–112. IEEE (2001)Google Scholar
  16. 16.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23, pp. 309–314. ACM (2004)Google Scholar
  17. 17.
    Ulen, J., Strandmark, P., Kahl, F.: Shortest paths with higher-order regularization. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2588–2600 (2015)CrossRefGoogle Scholar
  18. 18.
    Grady, L.: Computing exact discrete minimal surfaces: extending and solving the shortest path problem in 3D with application to segmentation. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 69–78. IEEE (2006)Google Scholar
  19. 19.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989)CrossRefGoogle Scholar
  20. 20.
    Chaussard, J., Couprie, M.: Surface thinning in 3D cubical complexes. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 135–148. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10210-3_11 CrossRefGoogle Scholar
  21. 21.
    Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, vol. 37. Springer, Netherlands (2008)MATHGoogle Scholar
  22. 22.
    Eberly, D., Gardner, R., Morse, B., Pizer, S., Scharlach, C.: Ridges for image analysis. J. Math. Imaging Vis. 4(4), 353–373 (1994)CrossRefGoogle Scholar
  23. 23.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 117–156 (1998)CrossRefGoogle Scholar
  24. 24.
    Kolomenkin, M., Shimshoni, I., Tal, A.: Multi-scale curve detection on surfaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 225–232(2013)Google Scholar
  25. 25.
    Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations