An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem

  • Thorsten Beier
  • Björn Andres
  • Ullrich Köthe
  • Fred A. Hamprecht
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9906)

Abstract

Many computer vision problems can be cast as an optimization problem whose feasible solutions are decompositions of a graph. The minimum cost lifted multicut problem is such an optimization problem. Its objective function can penalize or reward all decompositions for which any given pair of nodes are in distinct components. While this property has many potential applications, such applications are hampered by the fact that the problem is NP-hard. We propose a fusion move algorithm for computing feasible solutions, better and more efficiently than existing algorithms. We demonstrate this and applications to image segmentation, obtaining a new state of the art for a problem in biological image analysis.

References

  1. 1.
    Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic image segmentation with closedness constraints. In: ICCV (2011)Google Scholar
  2. 2.
    Bagon, S., Galun, M.: Large scale correlation clustering optimization. CoRR abs/1112.2903 (2011). http://arxiv.org/abs/1112.2903
  3. 3.
    Kim, T., Nowozin, S., Kohli, P., Yoo, C.D.: Variable grouping for energy minimization. In: CVPR (2011)Google Scholar
  4. 4.
    Kim, S., Yoo, C., Nowozin, S., Kohli, P.: Image segmentation using higher-order correlation clustering. TPAMI 36, 1761–1774 (2014)CrossRefGoogle Scholar
  5. 5.
    Yarkony, J., Ihler, A., Fowlkes, C.C.: Fast planar correlation clustering for image segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 568–581. Springer, Heidelberg (2012)Google Scholar
  6. 6.
    Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)CrossRefGoogle Scholar
  7. 7.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theoret. Comput. Sci. 361(2–3), 172–187 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In: ICCV (2015)Google Scholar
  10. 10.
    Andres, B.: Lifting of multicuts. CoRR abs/1503.03791 (2015). http://arxiv.org/abs/1503.03791
  11. 11.
    Voice, T., Polukarov, M., Jennings, N.R.: Coalition structure generation over graphs. J. Artif. Intell. Res. 45, 165–196 (2012)MathSciNetMATHGoogle Scholar
  12. 12.
    Bachrach, Y., Kohli, P., Kolmogorov, V., Zadimoghaddam, M.: Optimal coalition structure generation in cooperative graph games. In: AAAI (2013)Google Scholar
  13. 13.
    Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. Comput. 15(3), 233–248 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lempitsky, V.S., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1392–1405 (2010)CrossRefGoogle Scholar
  15. 15.
    Kappes, J.H., Beier, T., Schnörr, C.: MAP-inference on large scale higher-order discrete graphical models by fusion moves. In: International Workshop on Graphical Models in Computer Vision (2014)Google Scholar
  16. 16.
    Andres, B., Kroeger, T., Briggman, K.L., Denk, W., Korogod, N., Knott, G., Koethe, U., Hamprecht, F.A.: Globally optimal closed-surface segmentation for connectomics. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012)Google Scholar
  17. 17.
    Kappes, J.H., Speth, M., Reinelt, G., Schnörr, C.: Higher-order segmentation via multicuts. Comput. Vis. Image Underst. 143, 104–119 (2016). Inference and Learning of Graphical Models Theory and Applications in Computer Vision and Image AnalysisCrossRefGoogle Scholar
  18. 18.
    Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schn, C.: Globally optimal image partitioning by multicuts. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 31–44. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    Yarkony, J., Ihler, A., Fowlkes, C.C.: Fast planar correlation clustering for image segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 568–581. Springer, Heidelberg (2012)Google Scholar
  20. 20.
    Andres, B., Beier, T., Kappes, J.H.: OpenGM: a C++ library for discrete graphical models. arXiv e-prints (2012)Google Scholar
  21. 21.
    Beier, T., Kroeger, T., Kappes, J.H., Koethe, U., Hamprecht, F.: Cut, glue & cut: a fast, approximate solver for multicut partitioning. In: IEEE Conference on Computer Vision and Pattern Recognition 2014 (2014)Google Scholar
  22. 22.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–308 (1970)CrossRefMATHGoogle Scholar
  23. 23.
    Beier, T., Hamprecht, F.A., Kappes, J.H.: Fusion moves for correlation clustering. In: CVPR Proceedings (2015, in press)Google Scholar
  24. 24.
    Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., Tomancak, P., Hartenstein, V.: An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 8(10), 1–17 (2010)CrossRefGoogle Scholar
  25. 25.
    Arganda-Carreras, I., Turaga, S.C., Berger, D.R., Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J., Laptev, D., Dwivedi, S., Buhmann, J.M., Liu, T., Seyedhosseini, M., Tasdizen, T., Kamentsky, L., Burget, R., Uher, V., Tan, X., Sun, C., Pham, T., Bas, E., Uzunbas, M.G., Cardona, A., Schindelin, J., Seung, H.S.: Crowdsourcing the creation of image segmentation algorithms for connectomics. Front. Neuroanat. 9(142), 1–13 (2015)Google Scholar
  26. 26.
    Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Program. 45(1), 59–96 (1989)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Chopra, S., Rao, M.: The partition problem. Math. Program. 59(1–3), 87–115 (1993)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefMATHGoogle Scholar
  29. 29.
    Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: The lazy flipper: efficient depth-limited exhaustive search in discrete graphical models. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 154–166. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1392–1405 (2010)CrossRefGoogle Scholar
  31. 31.
    Meyer, F.: Watersheds on edge or node weighted graphs “par l’exemple”. CoRR abs/1303.1829 (2013). http://arxiv.org/abs/1303.1829
  32. 32.
    Meyer, F.: Stochastic watershed hierarchies. In: ICAPR 2015; 8th International Conference on Advances in Pattern Recognition. Indian Statistical Institute, Kolkata, January 2015Google Scholar
  33. 33.
    Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Opt. Eng. 34, 433–433 (1992)Google Scholar
  34. 34.
    Andres, B., Köthe, U., Kroeger, T., Helmstaedter, M., Briggman, K.L., Denk, W., Hamprecht, F.A.: 3D segmentation of SBFSEM images of neuropil by a graphical model over supervoxel boundaries. Med. Image Anal. 16(4), 796–805 (2012)CrossRefGoogle Scholar
  35. 35.
    Andres, B., Kroeger, T., Briggman, K.L., Denk, W., Korogod, N., Knott, G., Koethe, U., Hamprecht, F.A.: Globally optimal closed-surface segmentation for connectomics. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012)Google Scholar
  36. 36.
    Arbelaez, P.: Boundary extraction in natural images using ultrametric contour maps. In: Proceedings of 2006 Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 182. IEEE Computer Society, Washington, DC (2006)Google Scholar
  37. 37.
    Yang, X., Prasad, L., Latecki, L.J.: Affinity learning with diffusion on tensor product graph. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 28–38 (2013)CrossRefGoogle Scholar
  38. 38.
    Leung, T., Malik, J.: Contour continuity in region based image segmentation. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, p. 544. Springer, Heidelberg (1998)Google Scholar
  39. 39.
    Fowlkes, C., Malik, J.: How much does globalization help segmentation? Technical report, Division of Computer Science, University of California, Berkeley, July 2004Google Scholar
  40. 40.
    Maire, M., Arbelaez, P., Fowlkes, C.C., Malik, J.: Using contours to detect and localize junctions in natural images. In: CVPR (2008)Google Scholar
  41. 41.
    Lin, M., Chen, Q., Yan, S.: Network in network. CoRR abs/1312.4400 (2013). http://arxiv.org/abs/1312.4400
  42. 42.
    Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. PAMI 37, 1558–1570 (2015)CrossRefGoogle Scholar
  43. 43.
    Alush, A., Goldberger, J.: Ensemble segmentation using efficient integer linear programming. Pattern Anal. Mach. Intell. 34(10), 1966–1977 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Thorsten Beier
    • 1
  • Björn Andres
    • 2
  • Ullrich Köthe
    • 1
  • Fred A. Hamprecht
    • 1
  1. 1.HCI/IWR, University of HeidelbergHeidelbergGermany
  2. 2.Computer Vision and Multimodal ComputingMax Planck Institute for InformaticsSaarbrückenGermany

Personalised recommendations