Pattern Mining Saliency

  • Yuqiu Kong
  • Lijun Wang
  • Xiuping Liu
  • Huchuan LuEmail author
  • Xiang Ruan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9910)


This paper presents a new method to promote the performance of existing saliency detection algorithms. Prior bottom-up methods predict saliency maps by combining heuristic saliency cues, which may be unreliable. To remove error outputs and preserve accurate predictions, we develop a pattern mining based saliency seeds selection method. Given initial saliency maps, our method can effectively recognize discriminative and representative saliency patterns (features), which are robust to the noise in initial maps and can more accurately distinguish foreground from background. According to the mined saliency patterns, more reliable saliency seeds can be acquired. To further propagate the saliency labels of saliency seeds to other image regions, an Extended Random Walk (ERW) algorithm is proposed. Compared with prior methods, the proposed ERW regularized by a quadratic Laplacian term ensures the diffusion of seeds information to more distant areas and allows the incorporation of external classifiers. The contributions of our method are complementary to existing methods. Extensive evaluations on four data sets show that our method can significantly improve accuracy of existing methods and achieves more superior performance than state-of-the-arts.


Saliency detection Pattern mining Random walk 



The work is supported by the National Natural Science Foundation of China under Grant 61370143, 61262050, 61528101 and 61472060.

Supplementary material

419981_1_En_35_MOESM1_ESM.pdf (29.2 mb)
Supplementary material 1 (pdf 29895 KB)


  1. 1.
    Yang, L., Zheng, N., Yang, J., Chen, H.: A biased sampling strategy for object categorization. In: ICCV (2009)Google Scholar
  2. 2.
    Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Mahadevan, V., Vasconcelos, N.: Saliency-based discriminant tracking. In: CVPR (2009)Google Scholar
  4. 4.
    Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. In: CVPR (2010)Google Scholar
  5. 5.
    Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: BMVC (2011)Google Scholar
  6. 6.
    Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: ICCV (2013)Google Scholar
  8. 8.
    Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: CVPR (2014)Google Scholar
  9. 9.
    Tong, N., Lu, H., Ruan, X., Yang, M.H.: Salient object detection via bootstrap learning. In: CVPR (2015)Google Scholar
  10. 10.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. TPAMI 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  11. 11.
    Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: CVPR (2007)Google Scholar
  12. 12.
    Xie, Y., Lu, H., Yang, M.H.: Bayesian saliency via low and mid level cues. TIP 22(5), 1689–1698 (2013)MathSciNetGoogle Scholar
  13. 13.
    Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: CVPR (2012)Google Scholar
  14. 14.
    Cheng, M., Zhang, G., Mitra, N.J., Huang, X.H., S.: Global contrast based salient region detection. In: CVPR (2011)Google Scholar
  15. 15.
    Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: ICCV (2011)Google Scholar
  16. 16.
    Yang, C., Zhang, L., Lu, H., Yang, M.: Saliency detection via graph-based manifold ranking. In: CVPR (2013)Google Scholar
  17. 17.
    Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs for salient object detection in images. TIP 19(12), 3232–3242 (2010)MathSciNetGoogle Scholar
  18. 18.
    Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: A discriminative regional feature integration approach. In: CVPR (2013)Google Scholar
  19. 19.
    Kim, J., Han, D., Tai, Y.W., Kim, J.: Salient region detection via high-dimensional color transform. In: CVPR (2014)Google Scholar
  20. 20.
    Lu, S., Mahadevan, V., Vasconcelos, N.: Learning optimal seeds for diffusion-based salient object detection. In: CVPR (2014)Google Scholar
  21. 21.
    Wang, L., Lu, H., Ruan, X., Yang, M.H.: Deep networks for saliency detection via local estimation and global search. In: CVPR (2015)Google Scholar
  22. 22.
    Li, N., Sun, B., Yu, J.: A weighted sparse coding framework for saliency detection. In: CVPR (2015)Google Scholar
  23. 23.
    Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: ICCV (2011)Google Scholar
  24. 24.
    Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV (2013)Google Scholar
  25. 25.
    Li, C., Yuan, Y., Cai, W., Xia, Y., Feng, D.D.: Robust saliency detection via regularized random walks ranking. In: CVPR (2015)Google Scholar
  26. 26.
    Fernando, B., Fromont, E., Tuytelaars, T.: Effective use of frequent itemset mining for image classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 214–227. Springer, Heidelberg (2012)Google Scholar
  27. 27.
    Li, Y., Liu, L., Shen, C., van den Hengel, A.: Mid-level deep pattern mining. In: CVPR (2015)Google Scholar
  28. 28.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB (1994)Google Scholar
  29. 29.
    Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: POCV, pp. 49–56 (2010)Google Scholar
  30. 30.
    Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR (2013)Google Scholar
  31. 31.
    Li, Y., Hou, X., Koch, C., Rehg, J., Yuille, A.: The secrets of salient object segmentation. In: CVPR (2014)Google Scholar
  32. 32.
    Schölkopf, B., Platt, J., Hofmann, T.: Graph-based visual saliency. In: NIPS (2007)Google Scholar
  33. 33.
    Shen, X.S., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: CVPR (2012)Google Scholar
  34. 34.
    Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by ufo: Uniqueness, focusness and objectness. In: ICCV (2013)Google Scholar
  35. 35.
    Otsu, N.: A threshold selection method from gray-level histograms. SMC 9(1), 62–66 (1979)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Yuqiu Kong
    • 1
  • Lijun Wang
    • 2
  • Xiuping Liu
    • 1
  • Huchuan Lu
    • 2
    Email author
  • Xiang Ruan
    • 3
  1. 1.Department of Mathematical SciencesDalian University of TechnologyDalianChina
  2. 2.Department of Electrical EngineeringDalian University of TechnologyDalianChina
  3. 3.Tiwaki CorporationTiwakiJapan

Personalised recommendations