Pattern Mining Saliency
Abstract
This paper presents a new method to promote the performance of existing saliency detection algorithms. Prior bottom-up methods predict saliency maps by combining heuristic saliency cues, which may be unreliable. To remove error outputs and preserve accurate predictions, we develop a pattern mining based saliency seeds selection method. Given initial saliency maps, our method can effectively recognize discriminative and representative saliency patterns (features), which are robust to the noise in initial maps and can more accurately distinguish foreground from background. According to the mined saliency patterns, more reliable saliency seeds can be acquired. To further propagate the saliency labels of saliency seeds to other image regions, an Extended Random Walk (ERW) algorithm is proposed. Compared with prior methods, the proposed ERW regularized by a quadratic Laplacian term ensures the diffusion of seeds information to more distant areas and allows the incorporation of external classifiers. The contributions of our method are complementary to existing methods. Extensive evaluations on four data sets show that our method can significantly improve accuracy of existing methods and achieves more superior performance than state-of-the-arts.
Keywords
Saliency detection Pattern mining Random walkNotes
Acknowledgement
The work is supported by the National Natural Science Foundation of China under Grant 61370143, 61262050, 61528101 and 61472060.
Supplementary material
References
- 1.Yang, L., Zheng, N., Yang, J., Chen, H.: A biased sampling strategy for object categorization. In: ICCV (2009)Google Scholar
- 2.Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 3.Mahadevan, V., Vasconcelos, N.: Saliency-based discriminant tracking. In: CVPR (2009)Google Scholar
- 4.Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. In: CVPR (2010)Google Scholar
- 5.Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: BMVC (2011)Google Scholar
- 6.Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)Google Scholar
- 7.Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: ICCV (2013)Google Scholar
- 8.Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: CVPR (2014)Google Scholar
- 9.Tong, N., Lu, H., Ruan, X., Yang, M.H.: Salient object detection via bootstrap learning. In: CVPR (2015)Google Scholar
- 10.Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. TPAMI 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
- 11.Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: CVPR (2007)Google Scholar
- 12.Xie, Y., Lu, H., Yang, M.H.: Bayesian saliency via low and mid level cues. TIP 22(5), 1689–1698 (2013)MathSciNetGoogle Scholar
- 13.Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: CVPR (2012)Google Scholar
- 14.Cheng, M., Zhang, G., Mitra, N.J., Huang, X.H., S.: Global contrast based salient region detection. In: CVPR (2011)Google Scholar
- 15.Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: ICCV (2011)Google Scholar
- 16.Yang, C., Zhang, L., Lu, H., Yang, M.: Saliency detection via graph-based manifold ranking. In: CVPR (2013)Google Scholar
- 17.Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs for salient object detection in images. TIP 19(12), 3232–3242 (2010)MathSciNetGoogle Scholar
- 18.Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: A discriminative regional feature integration approach. In: CVPR (2013)Google Scholar
- 19.Kim, J., Han, D., Tai, Y.W., Kim, J.: Salient region detection via high-dimensional color transform. In: CVPR (2014)Google Scholar
- 20.Lu, S., Mahadevan, V., Vasconcelos, N.: Learning optimal seeds for diffusion-based salient object detection. In: CVPR (2014)Google Scholar
- 21.Wang, L., Lu, H., Ruan, X., Yang, M.H.: Deep networks for saliency detection via local estimation and global search. In: CVPR (2015)Google Scholar
- 22.Li, N., Sun, B., Yu, J.: A weighted sparse coding framework for saliency detection. In: CVPR (2015)Google Scholar
- 23.Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: ICCV (2011)Google Scholar
- 24.Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV (2013)Google Scholar
- 25.Li, C., Yuan, Y., Cai, W., Xia, Y., Feng, D.D.: Robust saliency detection via regularized random walks ranking. In: CVPR (2015)Google Scholar
- 26.Fernando, B., Fromont, E., Tuytelaars, T.: Effective use of frequent itemset mining for image classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 214–227. Springer, Heidelberg (2012)Google Scholar
- 27.Li, Y., Liu, L., Shen, C., van den Hengel, A.: Mid-level deep pattern mining. In: CVPR (2015)Google Scholar
- 28.Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB (1994)Google Scholar
- 29.Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: POCV, pp. 49–56 (2010)Google Scholar
- 30.Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR (2013)Google Scholar
- 31.Li, Y., Hou, X., Koch, C., Rehg, J., Yuille, A.: The secrets of salient object segmentation. In: CVPR (2014)Google Scholar
- 32.Schölkopf, B., Platt, J., Hofmann, T.: Graph-based visual saliency. In: NIPS (2007)Google Scholar
- 33.Shen, X.S., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: CVPR (2012)Google Scholar
- 34.Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by ufo: Uniqueness, focusness and objectness. In: ICCV (2013)Google Scholar
- 35.Otsu, N.: A threshold selection method from gray-level histograms. SMC 9(1), 62–66 (1979)MathSciNetGoogle Scholar