Advertisement

2D-Leap-Frog and Removal of Outliers in Noisy Photometric Stereo with Non-distant Illuminations

  • Ryszard KozeraEmail author
  • Felicja Okulicka-Dłużewska
  • Lyle Noakes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9972)

Abstract

This paper discusses the reconstruction of a Lambertian surface \(S_L\) in three-image noisy photometric stereo under the assumption that light-sources are not necessarily positioned at infinity. The corresponding multi-variable non-linear optimization task either incorporating or not an image boundary continuity enforcement (to remove outliers) is introduced. In addition, a feasible numerical scheme called 2D Leap-Frog is used to recover \(S_L\) from three noisy images. The entire setting is tested for non-distant and distant illuminations. The comparison tests are conducted for different surfaces.

Keywords

Noisy photometric stereo Non-distant illumination Lambertian surface 2D-Leap-Frog Optimization 

References

  1. 1.
    Horn, B.K.P.: Robot Vision. McGraw-Hill, New York (1986)Google Scholar
  2. 2.
    Luneburg, R.K.: Mathematical Theory of Optics. University of California Press, Berkeley (1964)zbMATHGoogle Scholar
  3. 3.
    Hurt, N.E.: Mathematical methods in shape-from-shading: a review of recent results. Acta Appl. Math. 23, 163–188 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Kozera, R.: Uniqueness in shape from shading revisited. J. Math. Imag. Vis. 7, 123–138 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Kozera, R.: On complete integrals and uniqueness in shape from shading. Appl. Math. Comput. 73(1), 1–37 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brooks, M.J., Chojnacki, W., Kozera, R.: Impossible and ambiguous shading patterns. Int. J. Comp. Vis. 7(2), 119–126 (1992)CrossRefGoogle Scholar
  7. 7.
    Oliensis, J.: Uniqueness in shape from shading. Int. J. Comp. Vis. 6(2), 75–104 (1991)zbMATHCrossRefGoogle Scholar
  8. 8.
    Brooks, M.J., Chojnacki, W., Kozera, R.: Circularly symmetrical eikonal equations and non-uniqueness in computer vision. J. Math. Anal. Appl. 165(1), 192–215 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Brooks, M.J., Chojnacki, W., Kozera, R.: Shading without shape. Quart. Appl. Maths. 50(1), 27–38 (1992)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Brooks, M.J., Chojnacki, W.: Direct computation of shape-from-shading. In: 12th International Conference Pattern Recognition Jerusalem, Israel, pp. 114–119. IEEE Computer Society Press, Los Alamitos, CA (1994)Google Scholar
  11. 11.
    Horn, B.K.P., Brooks, M.J.: Shape from Shading. MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  12. 12.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)CrossRefGoogle Scholar
  13. 13.
    Kozera, R.: Existence and uniqueness in photometric stereo. Appl. Math. Comput. 44(1), 1–104 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kozera, R.: On shape recovery from two shading patterns. Int. J. Patt. Rec. Art. Intel. 6(4), 673–698 (1992)CrossRefGoogle Scholar
  15. 15.
    Onn, R., Bruckstein, A.: Integrability disambiguates surface recovery in two image photometric stereo. Int. J. Comp. Vis. 5(1), 105–113 (1990)CrossRefGoogle Scholar
  16. 16.
    do Carmo, M.P.: Differential Forms and Applications. Springer, Heidelberg (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Horn, B.K.P.: Height and gradient from shading. Int. J. Comp. Vis. 5(1), 37–75 (1990)CrossRefGoogle Scholar
  18. 18.
    Wei, T., Klette, R.: On depth recovery from gradient vector field. In: Bhattacharaya, B.B., et al. (eds.) Algorithms, Architectures and Information Systems Security, pp. 765–797. World Scientific Publishing Co., Private Ltd., Singapore (2009)Google Scholar
  19. 19.
    Simchony, T., Chellappa, R., Shao, M.: Direct analytic methods for solving poisson equations in computer vision problems. IEEE Trans. Patt. Rec. Mach. Intell. 12(5), 435–446 (1990)zbMATHCrossRefGoogle Scholar
  20. 20.
    Frankot, R.T., Chellappa, R.: A method of enforcing integrability in shape from shading algorithms. IEEE Trans. Patt. Rec. Mach. Intell. 10(4), 439–451 (1988)zbMATHCrossRefGoogle Scholar
  21. 21.
    Noakes, L., Kozera, R.: The 2-D Leap-Frog: integrability, noise, and digitization. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 352–364. Springer, Heidelberg (2001). doi: 10.1007/3-540-45576-0_21 CrossRefGoogle Scholar
  22. 22.
    Noakes, L., Kozera, R.: The lawn-mowing algorithm for noisy gradient vector fields. In: Latecki, L.J. (ed.) Vision Geometry VIII, Proceedings of SPIE, vol. 3811, pp. 305–316, Denver, CO, USA (1999)Google Scholar
  23. 23.
    Noakes, L., Kozera, R.: The 2-D Leap-Frog Algorithm for optimal surface reconstruction. In: Latecki, L.J. (ed.) Vision Geometry VIII, Proceedings of SPIE, vol. 3811, pp. 317–328, Denver, CO, USA (1999)Google Scholar
  24. 24.
    Noakes, L., Kozera, R.: Nonlinearities and noise reduction in 3-source photometric stereo. J. Math. Imag. Vis. 18(3), 119–127 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Noakes, L., Kozera, R.: Denoising images: non-linear leap-frog for shape and light-source recovery. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 419–436. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Noakes, L.: A global algorithm for geodesics. J. Math. Austral. Soc. Ser. A 64, 37–50 (1999)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Kozera, R., Okulicka-Dłużewska, F., Noakes, L.: Integrated parallel 2D-Leap-Frog algorithm for noisy three image photometric stereo. In: Huang, F., Sugimoto, A. (eds.) PSIVT 2015. LNCS, vol. 9555, pp. 73–87. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30285-0_7 CrossRefGoogle Scholar
  28. 28.
    Cameron, T., Kozera, R., Datta, A.: A parallel Leap-Frog algorithm for 3-source photometric stereo. In: Wojciechowski, K., et al. (eds.) Computer Vision and Graphics. Computational Imaging and Vision, vol. 32, pp. 95–102. Springer, Dordrecht (2006)CrossRefGoogle Scholar
  29. 29.
    Castelán, M., Hancock, E.R.: Imposing integrability in geometric shape-from-shading. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 196–203. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Kozera, R., Okulicka-Dłużewska, F.: Conjugate gradient in noisy photometric stereo. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 338–346. Springer, Heidelberg (2014)Google Scholar
  31. 31.
    Kozera, R., Noakes, L.: Optimal knots selection for sparse reduced data. In: Huang, F., Sugimoto, A. (eds.) PSIVT 2015. LNCS, vol. 9555, pp. 3–14. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30285-0_1 CrossRefGoogle Scholar
  32. 32.
    Wöhler, C.: 3D Computer Vision: Efficient Methods and Applications. Springer-Verlag, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Kozera, R., Tchórzewski, J.: Outlier removal in 2D Leap Frog algorithm. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012. LNCS, vol. 7564, pp. 146–157. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ryszard Kozera
    • 1
    • 3
    Email author
  • Felicja Okulicka-Dłużewska
    • 2
  • Lyle Noakes
    • 4
  1. 1.Faculty of Applied Informatics and MathematicsWarsaw University of Life Sciences-SGGWWarsawPoland
  2. 2.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
  3. 3.School of Computer Science and Software EngineeringThe University of Western AustraliaCrawley, PerthAustralia
  4. 4.School of Mathematics and StatisticsThe University of Western AustraliaCrawley, PerthAustralia

Personalised recommendations