Robust Knot Segmentation by Knot Pith Tracking in 3D Tangential Images

  • Adrien KrähenbühlEmail author
  • Jean-Romain Roussel
  • Bertrand KerautretEmail author
  • Isabelle Debled-Rennesson
  • Frédéric Mothe
  • Fleur Longuetaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9972)


This paper proposes a fast, accurate and automatic method to segment wood knots from images obtained by X-Ray Computed Tomography scanner. The wood knot segmentation is a classical problem where the most popular segmentation techniques produce unsatisfactory results. In a previous work, a method was developed to detect knot areas and an approach was proposed to segment the knots. However this last step is not entirely satisfactory in the presence of sapwood. This paper presents a novel approach for knot segmentation, based on the original idea considering slices tangential to the growth rings. They allow to track the knot from the log pith to the bark. Knots are then segmented by detecting discrete ellipses in each slice. A complete implementation is proposed on the TKDetection software available online.


Segmentation Quality Angular Sector Major Radius Annual Growth Ring Vertical Inclination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    DGtal: digital geometry tools and algorithms library.
  2. 2.
    Aguilera, C., Sanchez, R., Baradit, E.: Detection of knots using X-ray tomographies and deformable contours with simulated annealing. Wood Res. 53, 57–66 (2008)Google Scholar
  3. 3.
    Andreu, J.-P., Rinnhofer, A.: Modeling knot geometry in norway spruce from industrial CT images. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 786–791. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Boukadida, H., Longuetaud, F., Colin, F., Freyburger, C., Constant, T., Leban, J.M., Mothe, F.: Pithextract: a robust algorithm for pith detection in computer tomography images of wood - application to 125 logs from 17 tree species. Comput. Electr. Agric. 85, 90–98 (2012)CrossRefGoogle Scholar
  5. 5.
    Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. JASA 74, 829–836 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Integral based curvature estimators in digital geometry. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 215–227. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37067-0_19 CrossRefGoogle Scholar
  7. 7.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: The power watershed algorithm c/c++ code.
  8. 8.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: a unifying graph-based optimization framework. IEEE PAMI 33(7), 1384–1399 (2010)CrossRefGoogle Scholar
  9. 9.
    Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by approximate global optimization. PR 42(10), 2265–2278 (2009)zbMATHGoogle Scholar
  10. 10.
    Krähenbühl, A., Kerautret, B., Feschet, F.: Knot Detection from Accumulation Map by Polar Scan. In: Barneva, P.R., et al. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 352–362. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26145-4_26 CrossRefGoogle Scholar
  11. 11.
    Krähenbühl, A.: TKDetection (2012).
  12. 12.
    Krähenbühl, A., Kerautret, B., Debled-Rennesson, I.: Knot segmentation in noisy 3D images of wood. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 383–394. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Longuetaud, F., Mothe, F.: Knot detection in X-Ray CT images of wood. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 209–218. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Nordmark, U.: Value recovery and production control in the forestry-wood chain using simulation technique. Ph.D. thesis, Luleå University of Technology (2005)Google Scholar
  15. 15.
    Roussel, J.R., Mothe, F., Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Longuetaud, F.: Automatic knot segmentation in CT images of wet softwood logs using a tangential approach. Comput. Electr. Agric. 104, 46–56 (2014)CrossRefGoogle Scholar
  16. 16.
    Van Aken, J.: An efficient ellipse-drawing algorithm. IEEE Comput. Graph. Appl. 4, 24–35 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Adrien Krähenbühl
    • 1
    Email author
  • Jean-Romain Roussel
    • 4
  • Bertrand Kerautret
    • 1
    Email author
  • Isabelle Debled-Rennesson
    • 1
  • Frédéric Mothe
    • 2
    • 3
  • Fleur Longuetaud
    • 2
    • 3
  1. 1.LORIA, UMR CNRS 7503, Université de LorraineVandœuvre-les-nancyFrance
  2. 2.INRA, UMR1092 LERFoBChampenouxFrance
  3. 3.AgroParisTech, UMR1092 LERFoBNancyFrance
  4. 4.CRMR, Départ. des sciences du bois et de la foretLavalCanada

Personalised recommendations