Advertisement

Visual Target Tracking Using a Low-Cost Methodology Based on Visual Words

  • Andrzej ŚluzekEmail author
  • Aamna Alali
  • Amna Alzaabi
  • Alia Aljasmi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9972)

Abstract

The paper discusses methodology and presents preliminary results of a low-cost method for visual tracking (in an exemplary setup consisting of a mobile agent, e.g. a drone, with an on-board that follows a mobile ground object randomly changing its location). In general, a well-known concept of keypoint-based image representation and matching has been applied. However, the proposed techniques have been simplified so that the future system can be prospectively installed on board of low-cost drones (or other similarly inexpensive agents). The main modifications include: (1) target localization based on statistical approximations, (2) simplified vocabulary building (and quantization of descriptors into visual words), and (3) a prospective use of dedicated hardware.

Keywords

Visual Word Mobile Agent Target Detection Query Image Visual Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  2. 2.
    Cai, S., Liu, L., Yin, S., Zhou, R., Zhang, W., Wei, S.: Optimization of speeded-up robust feature algorithm for hardware implementation. Sci. China Inf. Sci. 57(4), 1–15 (2014)CrossRefGoogle Scholar
  3. 3.
    Chum, O., Perdoch, M., Matas, J.: Geometric min-hashing: Finding a (thick) needle in a haystack. In: Proceedings of the IEEE Conference CVPR 2009, pp. 17–24 (2009)Google Scholar
  4. 4.
    Cornelis, N., Gool, L.V.: Fast scale invariant feature detection and matching on programmable graphics hardware. In: Proceedings of the IEEE Computer Vision and Pattern Recognition Workshops, CVPRW 2008, pp. 1–8. Anchorage (Alaska) (2008)Google Scholar
  5. 5.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Proceedings of the 4th European Conference on Computer Vision (ECCV 1996), pp. 683–695. Cambridge (UK) (1996)Google Scholar
  6. 6.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. SMC Part C Appl. Rev. 34(3), 334–352 (2004)Google Scholar
  7. 7.
    Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87(3), 316–336 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22, 761–767 (2004)CrossRefGoogle Scholar
  11. 11.
    MBZIRC: http://www.mbzirc.com/. Accessed 20 Apr 2016
  12. 12.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65, 43–72 (2005)CrossRefGoogle Scholar
  14. 14.
    Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE Conference on CVPR 2006, vol. 2, pp. 2161–2168 (2006)Google Scholar
  15. 15.
    Paradowski, M., Śluzek, A.: Local keypoints and global affine geometry: triangles and ellipses for image fragment matching. In: Kwaśnicka, H., Jain, L.C. (eds.) Innovations in Intelligent Image Analysis. SCI, vol. 339, pp. 195–224. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Pinho, R., Tavares, J.: Tracking features in image sequences with kalman filtering, global optimization, mahalanobis distance and a management model. Comput. Model. Eng. Sci. 46(1), 51–75 (2009)zbMATHGoogle Scholar
  17. 17.
    Pinho, R., Tavares, J., Correia, M.: A movement tracking management model with kalman filtering, global optimization techniques and mahalanobis distance. Lect. Ser. Comput. Comput. Sci. 4A, 463–466 (2005)Google Scholar
  18. 18.
    Salahat, E., Saleh, H., Sluzek, A., Al-Qutayri, M., Mohammad, B., Elnaggar, M.: Architecture and method for real-time parallel detection and extraction of maximally stable extremal regions (msers). U.S. Patent 9311555, April 2016Google Scholar
  19. 19.
    Schmid, C., Mohr, R.: Object recognition using local characterization and semi-local constraints. Technical report, INRIA (1996)Google Scholar
  20. 20.
    Śluzek, A.: Visual detection of objects by mobile agents using cbvir techniques of low complexity. In: Proceedings of the FedCSIS 2015 (Annals of Computer Science and Information Systems), vol. 5, pp. 241–246 (1996)Google Scholar
  21. 21.
    Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: An experimental survey. IEEE Trans. PAMI 36(7), 1442–1468 (2014)CrossRefGoogle Scholar
  22. 22.
    Stewénius, H., Gunderson, S., Pilet, J.: Size matters: Exhaustive geometric verification for image retrieval. In: Proceedings of the ECCV 2012, vol. II, pp. 674–687. Florence (2012)Google Scholar
  23. 23.
    Tell, D., Carlsson, S.: Combining appearance and topology for wide baseline matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 68–81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Think-Science-Fair: http://www.thinkscience.ae/en/join/. Accessed 10 May 2016
  25. 25.
    Vedaldi, A., Zisserman, A.: http://www.robots.ox.ac.uk/vgg/practicals/instance-recognition/index.html. Accessed 20 Apr 2016
  26. 26.
    Wolfson, H., Rigoutsos, I.: Geometric hashing: An overview. IEEE Comp. Sci. Eng. 4(4), 10–21 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Andrzej Śluzek
    • 1
    Email author
  • Aamna Alali
    • 1
  • Amna Alzaabi
    • 1
  • Alia Aljasmi
    • 1
  1. 1.Khalifa UniversityAbu DhabiUAE

Personalised recommendations