Fully-Automatic Method for Assessment of Flow-Mediated Dilation

  • Bartosz ZielińskiEmail author
  • Agata Dróżdż
  • Marzena Frołow
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9972)


The most popular method for assessment the endothelial function, called flow-mediated dilation, is based on monitoring how the brachial artery diameter changes in hyperemia state. All of the existing methods that assess FMD are exceedingly time consuming, as they require supervising analysis of the whole video. The presented method fully-automatically analyzes the videos and returns the FMD value using region of interest (ROI) defined by the operator. The main contributions of this paper are: minimizing inter and intra-observer variability; eliminating supervision from the analysis; applying more informative techniques than edge detectors; providing dataset which can be used by other researchers to test their fully-automatic methods.


Ultrasound videos Flow-mediated dilation Computer-aided diagnosis Machine learning Computer vision Line descriptor 



Dataset used in this paper was acquired from Jagiellonian Centre for Experimental Therapeutics (JCET) at Jagiellonian University in Kraków, Poland. The ultrasound videos were obtained during the study supported by European Union from the resources of the European Regional Development Fund under the Innovative Economy Programme (grant coordinated by JCET-UJ, No POIG. 01.01.02-00-069/09). We gratefully acknowledge the support from Prof. Stefan Chłopicki that were instrumental to carry out this study.


  1. 1.
    Bartoli, G., Menegaz, G., Lisi, M., Di Stolfo, G., Dragoni, S., Gori, T.: Model-based analysis of flow-mediated dilation and intima-media thickness. J. Biomed. Imaging 2008, 16–16 (2008)Google Scholar
  2. 2.
    Bots, M.L., Westerink, J., Rabelink, T.J., de Koning, E.J.: Assessment of FMD of the brachial artery: effects of technical aspects of the FMD measurement on the FMD response. Eur. Heart J. 26(4), 363–368 (2005)CrossRefGoogle Scholar
  3. 3.
    Celermajer, D.S., Sorensen, K., Gooch, V., Sullivan, I., Lloyd, J., Deanfield, J., Spiegelhalter, D., et al.: Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340(8828), 1111–1115 (1992)CrossRefGoogle Scholar
  4. 4.
    Corretti, M.C., Anderson, T.J., Benjamin, E.J., Celermajer, D., Charbonneau, F., Creager, M.A., Deanfield, J., Drexler, H., Gerhard-Herman, M., Herrington, D., et al.: Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the international brachial artery reactivity task force. J. Am. Coll. Cardiol. 39(2), 257–265 (2002)CrossRefGoogle Scholar
  5. 5.
    Craiem, D., Chironi, G., Gariepy, J., Miranda-Lacet, J., Levenson, J., Simon, A.: New monitoring software for larger clinical application of brachial artery flow-mediated vasodilatation measurements. J. Hypertens. 25(1), 133–140 (2007)CrossRefGoogle Scholar
  6. 6.
    Faita, F., Masi, S., Loukogeorgakis, S., Gemignani, V., Okorie, M., Bianchini, E., Charakida, M., Demi, M., Ghiadoni, L., Deanfield, J.E.: Comparison of two automatic methods for the assessment of brachial artery flow-mediated dilation. J. Hypertens. 29(1), 85–90 (2011)CrossRefGoogle Scholar
  7. 7.
    Flammer, A.J., Anderson, T., Celermajer, D.S., Creager, M.A., Deanfield, J., Ganz, P., Hamburg, N.M., Lüscher, T.F., Shechter, M., Taddei, S., et al.: The assessment of endothelial function from research into clinical practice. Circulation 126(6), 753–767 (2012)CrossRefGoogle Scholar
  8. 8.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gemignani, V., Faita, F., Ghiadoni, L., Poggianti, E., Demi, M.: A system for real-time measurement of the brachial artery diameter in b-mode ultrasound images. IEEE Trans. Med. Imaging 26(3), 393–404 (2007)CrossRefGoogle Scholar
  10. 10.
    Gryglewski, R.J.: Pharmacology of vascular endothelium. FEBS J. 272(12), 2956–2967 (2005)CrossRefGoogle Scholar
  11. 11.
    Hiltawsky, K., Wiegratz, A., Enderle, M., Ermert, H.: Real-time detection of vessel diameters with ultrasound. echtzeiterkennung von gefäßdurchmessern mit ultraschall. Biomedizinische Technik/Biomedical. Engineering 48(5), 141–146 (2003)Google Scholar
  12. 12.
    Liang, Q., Wendelhag, I., Wikstrand, J., Gustavsson, T.: A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images. IEEE Trans. Medi. Imaging 19(2), 127–142 (2000)CrossRefGoogle Scholar
  13. 13.
    Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Rusboost: A hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(1), 185–197 (2010)CrossRefGoogle Scholar
  14. 14.
    Sidhu, J., Newey, V., Nassiri, D., Kaski, J.: A rapid and reproducible on line automated technique to determine endothelial function. Heart 88(3), 289–292 (2002)CrossRefGoogle Scholar
  15. 15.
    Sonka, M., Liang, W., Lauer, R.M.: Automated analysis of brachial ultrasound image sequences: early detection of cardiovascular disease via surrogates of endothelial function. IEEE Trans. Med. Imaging 21(10), 1271–1279 (2002)CrossRefGoogle Scholar
  16. 16.
    Thijssen, D.H., Black, M.A., Pyke, K.E., Padilla, J., Atkinson, G., Harris, R.A., Parker, B., Widlansky, M.E., Tschakovsky, M.E., Green, D.J.: Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am. J. Physiol. Heart Circulatory Physiol. 300(1), H2–H12 (2011)CrossRefGoogle Scholar
  17. 17.
    Woodman, R., Playford, D., Watts, G., Cheetham, C., Reed, C., Taylor, R., Puddey, I., Beilin, L., Burke, V., Mori, T., et al.: Improved analysis of brachial artery ultrasound using a novel edge-detection software system. J. Appl. Physiol. 91(2), 929–937 (2001)Google Scholar
  18. 18.
    Zielinski, B., Roman, A., Drozdz, A., Kowalewska, A., Frolow, M.: A new approach to automatic continuous artery diameter measurement. In: 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 247–251. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Bartosz Zieliński
    • 1
    Email author
  • Agata Dróżdż
    • 2
  • Marzena Frołow
    • 2
  1. 1.Institute of Computer Science and Computer Mathematics, Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakówPoland

Personalised recommendations