Depth Guided Detection of Salient Objects

  • Łukasz Dąbała
  • Przemysław Rokita
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9972)


Saliency estimation is a complex problem of computer vision area, which results can enhance many tools or applications. In most of existing solutions, data that comes from stereopsis was not involved. We propose an algorithm, that adds depth information to detection of important objects in the scene. We show and confirm, that the whole problem of salient objects detection can be decomposed into series of simple image processing operations. To verify functioning and performance of the method, we test it on available RGBD datasets.


Color Space Human Visual System Depth Information Salient Object Conditional Random Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Itti, L.: Visual salience. Scholarpedia 2(9), 3327 (2007)CrossRefGoogle Scholar
  2. 2.
    Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980)CrossRefGoogle Scholar
  3. 3.
    Nothdurft, H.-C.: Salience from feature contrast: additivity across dimensions. Vis. Res. 40(10–12), 1183–1201 (2000)CrossRefGoogle Scholar
  4. 4.
    Koch, C., Ullman, S.: Shifts in selective attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985)Google Scholar
  5. 5.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 1297–1304. IEEE Computer Society, Washington, DC, USA (2011)Google Scholar
  6. 6.
    Hadfield, S., Bowden, R.: Kinecting the dots: particle based scene flow from depth sensors. In: Metaxas, D., Quan, L., Sanfeliu, A., Van Gool, L. (eds.) ICCV, pp. 2290–2295. IEEE Computer Society (2011)Google Scholar
  7. 7.
    Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In: CVPR, pp. 454–461. IEEE Computer Society (2012)Google Scholar
  8. 8.
    Cheng, Y., Huazhu, F., Wei, X., Xiao, J., Cao, X.: Depth enhanced saliency detection method. In: Wang, H., Davis, L., Zhu, W., Kopf, S., Qu, Y., Yu, J., Sang, J., Mei, T. (eds.) ICIMCS, p. 23. ACM (2014)Google Scholar
  9. 9.
    Perazzi, F., Kraehenbuehl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: CVPR, pp. 733–740. IEEE Computer Society (2012)Google Scholar
  10. 10.
    Ciptadi, A., Hermans, T., Rehg, J.M.: An in depth view of saliency. In: Burghardt, T., Damen, D., Mayol-Cuevas, W.W., Mirmehdi, M. (eds.) BMVC. BMVA Press, Guildford (2013)Google Scholar
  11. 11.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on PAMI 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  12. 12.
    Guo, C., Ma, Q., Zhang, L.: Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: CVPR. IEEE Computer Society (2008)Google Scholar
  13. 13.
    Ma, Y.-F., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. In: Rowe, L.A., Vin, H.M., Plagemann, T., Shenoy, P.J., Smith, J.R. (eds.) ACM Multimedia, pp. 374–381. ACM (2003)Google Scholar
  14. 14.
    Cheng, M.-M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.-M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)CrossRefGoogle Scholar
  15. 15.
    Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)CrossRefGoogle Scholar
  16. 16.
    Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)CrossRefGoogle Scholar
  17. 17.
    Palmer, S.E.: Vision Science: Photons to Phenomenology. The MIT Press, Cambridge (1999)Google Scholar
  18. 18.
    Howard, I.P., Rogers, B.J.: Perceiving in Depth. Stereoscopic Vision, vol. 2. OUP, USA (2012)CrossRefGoogle Scholar
  19. 19.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Suesstrunk, S.: SLIC superpixels. Technical report, EPFL (2010)Google Scholar
  20. 20.
    Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, vol. 7573, pp. 414–429. Springer, Heidelberg (2012)Google Scholar
  21. 21.
    Achanta, R., Hemami, S.S., Estrada, F.J., Suesstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604. IEEE Computer Society (2009)Google Scholar
  22. 22.
    Achanta, R., Suesstrunk, S.: Saliency detection using maximum symmetric surround. In: ICIP, pp. 2653–2656. IEEE (2010)Google Scholar
  23. 23.
    Yang, C., Zhang, L., Huchuan, L., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: CVPR, pp. 3166–3173. IEEE (2013)Google Scholar
  24. 24.
    Cheng, M.-M., Warrell, J., Lin, W.-Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV, pp. 1529–1536. IEEE Computer Society (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations