Generation of Complex Underground Systems for Application in Computer Games with Schematic Maps and L-Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9972)

Abstract

This paper presents a method for procedural generation of complex underground systems, by processing set of schematic input maps and incorporating L-system and cellular automata. Existing solutions usually focus only on generation of 2D maps. 3D procedures tend to require large amount of input data or complex computation, rarely providing user with considerable level of control over shape of generated system. For applications such as computer games, most of existing algorithms are not acceptable. We present our solution, that allows controlled generation of complex, underground systems, based on simplified input. Final objects produced by presented algorithm can be further edited and are represented as meshes in 3D space. We allow evaluation at every key step, ensuring high level of controllability and proximity of final object to user specifications. Results we obtain can be used in computer games or similar applications.

References

  1. 1.
    Mark, B., Berechet, T., Mahlmann, T., Togelius, J.: Procedural generation of 3D caves for games on the GPU. In: Foundations of Digital Games (2015)Google Scholar
  2. 2.
    Palmer, A.N.: Origin and morphology of limestone caves. Geol. Soc. Am. Bull. 103(1), 1–21 (1991)CrossRefGoogle Scholar
  3. 3.
    Shaker, N., Liapis, A., Togelius, J., Lopes, R., Bidara, R.: Constructive generation methods for dungeons and levels (DRAFT). In: Procedural Content Generation in Games, pp. 31–55 (2015)Google Scholar
  4. 4.
    van der Linden, R., Lopes, R., Bidarra, R.: Procedural generation of dungeons. IEEE Trans. Comput. Intell. AI Games 6(1), 78–89 (2014)CrossRefGoogle Scholar
  5. 5.
    Galin, E., Peytavie, A., Marchal, N., Gurin, E.: Procedural generation of roads. Comput. Graph. Forum 29(2), 429–438 (2010). Blackwell Publishing LtdCrossRefGoogle Scholar
  6. 6.
    Huijser, R., Dobbe, J., Bronsvoort, W.F., Bidarra, R.: Procedural natural systems for game level design. In: SBGAMES, pp. 189–198. IEEE (2010)Google Scholar
  7. 7.
    Kamal, K.R., Kaykobad, M.: Generation of mountain ranges by modifying a controlled terrain generation approach. In: 11th International Conference on Computer and Information Technology, pp. 527–532. IEEE, December 2008Google Scholar
  8. 8.
    Gamito, M.N., Musgrave, F.K.: Procedural landscapes with overhangs. In: 10th Portuguese Computer Graphics Meeting, vol. 2, p. 3 (2001)Google Scholar
  9. 9.
    Michelon de Carli, D., Pozzer, C.T., Bevilacqua, F., Schetinger, V.: Procedural generation of 3D canyons. In: SIBGRAPI, pp. 103–110. IEEE (2014)Google Scholar
  10. 10.
    Peytavie, A., Galin, E., Grosjean, J., Merillou, S.: Arches: a framework for modeling complex terrains. Comput. Graph. Forum 28(2), 457–467 (2009). Blackwell Publishing LtdCrossRefGoogle Scholar
  11. 11.
    Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R.: A declarative approach to procedural modeling of virtual worlds. Comput. Graph. 35(2), 352–363 (2011)CrossRefGoogle Scholar
  12. 12.
    Smelik, R., Galka, K., de Kraker, K.J., Kuijper, F., Bidarra, R.: Semantic constraints for procedural generation of virtual worlds. In: Proceedings of the 2nd International Workshop on Procedural Content Generation in Games, p. 9. ACM (2011)Google Scholar
  13. 13.
    Prusinkiewicz, P., Hammel, M.: A fractal model of mountains with rivers. Graph. Interface 93, 174–180 (1993). Canadian Information Processing SocietyGoogle Scholar
  14. 14.
    Tutenel, T., Bidarra, R., Smelik, R.M., De Kraker, K.J.: Rule-based layout solving and its application to procedural interior generation. In: CASA Workshop on 3D Advanced Media in Gaming and Simulation (2009)Google Scholar
  15. 15.
    Merrell, P., Manocha, D.: Model synthesis: a general procedural modeling algorithm. IEEE Trans. Visual Comput. Graphics 17(6), 715–728 (2011)CrossRefGoogle Scholar
  16. 16.
    Matthews, E., Malloy, B.: Procedural generation of story-driven maps. In: CGAMES, pp. 107–112. IEEE (2011)Google Scholar
  17. 17.
    Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R.: A proposal for a procedural terrain modelling framework. In: EGVE, pp. 39–42 (2008)Google Scholar
  18. 18.
    Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R.: Declarative terrain modeling for military training games. Int. J. Comput. Games Technol. 2010 (2010). Article no: 2Google Scholar
  19. 19.
    Raz Tortelli, D.M., Walter, M.: Modeling and rendering the growth of speleothems in real-time. In: GRAPP, pp. 27–35 (2009)Google Scholar
  20. 20.
    Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular automata for real-time generation of infinite cave levels. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games, p. 10. ACM (2010)Google Scholar
  21. 21.
    Valtchanov, V., Brown, J.A.: Evolving dungeon crawler levels with relative placement. In: Proceedings of the 5th International C* Conference on Computer Science and Software Engineering, pp. 27–35. ACM (2012)Google Scholar
  22. 22.
    Ashlock, D., Lee, C., McGuinness, C.: Search-based procedural generation of maze-like levels. IEEE Trans. Comput. Intell. AI Games 3(3), 260–273 (2011)CrossRefGoogle Scholar
  23. 23.
    Cui, J., Chow, Y.W., Zhang, M.: Procedural generation of 3D cave models with stalactites and stalagmites (2011)Google Scholar
  24. 24.
    Boggus, M., Crawfis, R.: Explicit generation of 3D models of solution caves for virtual environments. In: CGVR, pp. 85–90 (2009)Google Scholar
  25. 25.
    Boggus, M., Crawfis, R.: Procedural creation of 3D solution cave models. In: Proceedings of IASTED, pp. 180–186 (2009)Google Scholar
  26. 26.
    Santamaria-Ibirika, A., Cantero, X., Huerta, S., Santos, I., Bringas, P.G.: Procedural playable cave systems based on voronoi diagram and delaunay triangulation. In: International Conference on Cyberworlds, pp. 15–22. IEEE (2014)Google Scholar
  27. 27.
    Boggus, M., Crawfis, R.: Prismfields: a framework for interactive modeling of three dimensional caves. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6454, pp. 213–221. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17274-8_21 CrossRefGoogle Scholar
  28. 28.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer Science & Business Media, New York (2012)MATHGoogle Scholar
  29. 29.
    Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content generation for games: a survey. ACM TOMM 9(1), 1 (2013)CrossRefGoogle Scholar
  30. 30.
    Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural modelling for virtual worlds. Comput. Graph. Forum 33(6), 31–50 (2014)CrossRefGoogle Scholar
  31. 31.
    Ebert, D.S.: Texturing & Modeling: A Procedural Approach. Morgan Kaufmann, Burlington (2003)Google Scholar
  32. 32.
    Antoniuk, I., Rokita, P.: Procedural generation of adjustable terrain for application in computer games using 2D maps. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 75–84. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19941-2_8 CrossRefGoogle Scholar
  33. 33.
    Blender application home page. https://www.blender.org/. Accesed 14 Jan 2016

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations