UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9974)

Abstract

The need to store and manipulate large volume of (unstructured) data has led to the development of several NoSQL databases for better scalability. Graph databases are a particular kind of NoSQL databases that have proven their efficiency to store and query highly interconnected data, and have become a promising solution for multiple applications. While the mapping of conceptual schemas to relational databases is a well-studied field of research, there are only few solutions that target conceptual modeling for NoSQL databases and even less focusing on graph databases. This is specially true when dealing with the mapping of business rules and constraints in the conceptual schema. In this article we describe a mapping from UML/OCL conceptual schemas to Blueprints, an abstraction layer on top of a variety of graph databases, and Gremlin, a graph traversal language, via an intermediate Graph metamodel. Tool support is fully available.

Keywords

Database design UML OCL NoSQL Graph database Gremlin 

References

  1. 1.
    Anand, M.K., Bowers, S., Ludäscher, B.: Techniques for efficiently querying scientific workflow provenance graphs. In: EDBT, vol. 10, pp. 287–298 (2010)Google Scholar
  2. 2.
    Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4EMF, a scalable persistence layer for EMF models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 230–241. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09195-2_15 Google Scholar
  3. 3.
    Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt Publishing Ltd., Birmingham (2013)Google Scholar
  4. 4.
    Brambilla, M., Cabot, J.: Constraint tuning and management for web applications. In: Proceedings of the 6th ICWE Conference, pp. 345–352. ACM (2006)Google Scholar
  5. 5.
    Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL systems. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 223–231. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12206-9_18 Google Scholar
  6. 6.
    Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual schemas. JSS 82(9), 1459–1478 (2009)Google Scholar
  7. 7.
    Chiang, R.H.L., Barron, T.M., Storey, V.C.: Reverse engineering of relational databases: extraction of an EER model from a relational database. Data Knowl. Eng. 12(2), 107–142 (1994)CrossRefGoogle Scholar
  8. 8.
    Daniel, G., Sunyé, G., Cabot, J.: Mogwaï: a framework to handle complex queries on large models. In: Proceedings of the 10th RCIS Conference. IEEE (2016, to appear). http://tinyurl.com/zx6cfam
  9. 9.
    Demuth, B., Hussmann, H.: Using UML/OCL constraints for relational database design. In: France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 598–613. Springer, Heidelberg (1999). doi:10.1007/3-540-46852-8_42 CrossRefGoogle Scholar
  10. 10.
    Demuth, B., Hussmann, H., Loecher, S.: OCL as a specification language for business rules in database applications. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 104–117. Springer, Heidelberg (2001). doi:10.1007/3-540-45441-1_9 CrossRefGoogle Scholar
  11. 11.
    Fan, W.: Graph pattern matching revised for social network analysis. In: Proceedings of the 15th ICDT, pp. 8–21. ACM (2012)Google Scholar
  12. 12.
    Hausenblas, M., Nadeau, J.: Apache drill: interactive ad-hoc analysis at scale. Big Data 1(2), 100–104 (2013)CrossRefGoogle Scholar
  13. 13.
    Cánovas Izquierdo, J.L., Cabot, J.: Discovering implicit schemas in JSON Data. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 68–83. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39200-9_8 CrossRefGoogle Scholar
  14. 14.
    Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. SCP 72(1–2), 31–39 (2008)MathSciNetMATHGoogle Scholar
  15. 15.
    Jouault, F., Kurtev, I.: On the architectural alignment of ATL and QVT. In: Proceedings of the 21st SAC Conference, pp. 1188–1195. ACM (2006)Google Scholar
  16. 16.
    Lal, M.: Neo4j Graph Data Modeling. Packt Publishing Ltd., Birmingham (2015)Google Scholar
  17. 17.
    Leonard, A.: Pro Hibernate and MongoDB. Apress, Berkeley (2013)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Gu, P., Zhang, C.: Transforming UML class diagrams into HBase based on meta-model. In: Proceedings of the 4th ISEEE Conference, vol. 2, pp. 720–724. IEEE (2014)Google Scholar
  19. 19.
    Marcos, E., Vela, B., Cavero, J.M.: A methodological approach for object-relational database design using UML. SoSyM 2(1), 59–72 (2003)Google Scholar
  20. 20.
    Mior, M.J., Salem, K., Aboulnaga, A., Liu, R., NoSE: schema design for NoSQL applications. In: 32nd ICDE Conference. IEEE (2016, accepted). http://tinyurl.com/hqoxddx
  21. 21.
    Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., Abramov, J.: Security issues in NoSQL databases. In: Proceedings of the 10th TrustCom Conference, pp. 541–547. IEEE (2011)Google Scholar
  22. 22.
    OMG: MDA Specifications (2016). http://www.omg.org/mda/specs.htm
  23. 23.
    OMG: OCL Specification (2016). www.omg.org/spec/OCL
  24. 24.
    OMG: UML Specification (2016). www.omg.org/spec/UML
  25. 25.
    Sevilla Ruiz, D., Morales, S.F., García Molina, J.: Inferring versioned schemas from NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25264-3_35 CrossRefGoogle Scholar
  26. 26.
    TinkerPop: Blueprints API (2016). blueprints.tinkerpop.com
  27. 27.
    TinkerPop: The Gremlin Language (2016). gremlin.tinkerpop.com

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.AtlanMod TeamInria, Mines Nantes, LinaNantesFrance
  2. 2.ICREABarcelonaSpain
  3. 3.Internet Interdisciplinary Institute, UOCBarcelonaSpain

Personalised recommendations