Learning Pattern Languages over Groups

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9925)


This article studies the learnability of classes of pattern languages over automatic groups. It is shown that the class of bounded unions of pattern languages over finitely generated Abelian automatic groups is explanatorily learnable. For patterns in which variables occur at most n times, it is shown that the classes of languages generated by such patterns as well as their bounded unions are, for finitely generated automatic groups, explanatorily learnable by an automatic learner. In contrast, automatic learners cannot learn the unions of up to two arbitrary pattern languages over the integers. Furthermore, there is an algorithm which, given an automaton describing a group G, generates a learning algorithm \(M_G\) such that either \(M_G\) explanatorily learns all pattern languages over G or there is no learner for this set of languages at all, not even a non-recursive one. For some automatic groups, non-learnability results of natural classes of pattern languages are provided.



The authors would like to thank the referees for detailed comments that helped to improve the presentation of this article.


  1. 1.
    Angluin, D.: Inductive inference of formal languages from positive data. Inf. Control 45, 117–135 (1980)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46–62 (1980)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baliga, G., Case, J., Jain, S.: The synthesis of language learners. Inf. Comput. 152, 16–43 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: Theory of Algorithms and Programs, vol. 1, pp. 82–88. Latvian State University (1974). (in Russian)Google Scholar
  5. 5.
    Blumensath, A.: Automatic structures. Diploma thesis, RWTH Aachen (1999)Google Scholar
  6. 6.
    Blumensath, A., Grädel, E.: Automatic structures. In: Fifteenth Annual IEEE Symposium on Logic in Computer Science, Santa Barbara, LICS 2000, pp. 51–62. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  7. 7.
    Case, J., Jain, S., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic learners with feedback queries. J. Comput. Syst. Sci. 80, 806–820 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982). doi:10.1007/BFb0012761 CrossRefGoogle Scholar
  9. 9.
    Case, J., Smith, C.: Comparison of identification criteria for machine inductive inference. Theor. Comput. Sci. 25, 193–220 (1983)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)CrossRefMATHGoogle Scholar
  11. 11.
    Hodgson, B.R.: Théories décidables par automate fini. Ph.D. thesis, University of Montréal (1976)Google Scholar
  12. 12.
    Hodgson, B.R.: Décidabilité par automate fini. Ann. Sci. Math. Qué. 7(1), 39–57 (1983)MathSciNetMATHGoogle Scholar
  13. 13.
    Jain, S., Ong, Y.S., Shi, P., Stephan, F.: On automatic families. In: Proceedings of the Eleventh Asian Logic Conference in Honour of Professor Chong Chi Tat on his Sixtieth Birthday, pp. 94–113. World Scientific (2012)Google Scholar
  14. 14.
    Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups. J. Algebra 302(2), 451–552 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kharlampovich, O., Myasnikov, A.: Definable subsets in a hyperbolic group. Int. J. Algebra Comput. 23(1), 91–110 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Khoussainov, B., Minnes, M.: Three lectures on automatic structures. In: Proceedings of Logic Colloquium 2007, Lecture Notes in Logic, vol. 35, pp. 132–176 (2010)Google Scholar
  17. 17.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995). doi:10.1007/3-540-60178-3_93 CrossRefGoogle Scholar
  18. 18.
    Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages. New Gener. Comput. 8, 361–370 (1991)CrossRefMATHGoogle Scholar
  19. 19.
    Lange, S., Zeugmann, T.: Incremental learning from positive data. J. Comput. Syst. Sci. 53, 88–103 (1996)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Myasnikov, A., Romankov, V.: On rationality of verbal subsets in a group. Theory Comput. Syst. 52(4), 587–598 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nies, A.: Describing groups. Bull. Symb. Log. 13, 305–339 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Nies, A., Thomas, R.M.: FA-presentable groups and rings. J. Algebra 320, 569–585 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Oliver, G.P., Thomas, R.M.: Automatic presentations for finitely generated groups. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31856-9_57 CrossRefGoogle Scholar
  24. 24.
    Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. Bradford - The MIT Press, Cambridge (1986)Google Scholar
  25. 25.
    Osherson, D., Weinstein, S.: Criteria for language learning. Inf. Control 52, 123–138 (1982)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989). doi:10.1007/3-540-51734-0_50 CrossRefGoogle Scholar
  27. 27.
    Reidenbach, D.: A non-learnable class of E-pattern languages. Theor. Comput. Sci. 350, 91–102 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rubin, S.: Automata presenting structures: a survey of the finite string case. Bull. Symb. Log. 14, 169–209 (2008)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS Symposium on Software Science and Engineering 1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983). doi:10.1007/3-540-11980-9_19 CrossRefGoogle Scholar
  30. 30.
    Shinohara, T., Arimura, H.: Inductive inference of unbounded unions of pattern languages from positive data. In: Arikawa, S., Sharma, A.K. (eds.) ALT 1996. LNCS, vol. 1160, pp. 256–271. Springer, Heidelberg (1996). doi:10.1007/3-540-61863-5_51 CrossRefGoogle Scholar
  31. 31.
    Tsankov, T.: The additive group of the rationals does not have an automatic presentation. J. Symb. Log. 76(4), 1341–1351 (2011)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. J. Inf. Process. Cybern. (EIK) 12(1–2), 93–99 (1976)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute 1, Faculty of Computer ScienceUniversität der Bundeswehr MünchenNeubibergGermany
  2. 2.School of ComputingNational University of SingaporeSingaporeRepublic of Singapore
  3. 3.Department of MathematicsNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations